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In this paper we consider the problem of motion of a circular body interacting dynamically with
point vortices on the surface of a two-dimensional sphere. In its spirit this problem traces back to
the classical texts of Beltrami, Bogomolov, Gromeka, Lamb, and Zermelo, which will be discussed
in detail in the main text. Since this journal issue is dedicated to the 60th birthday of our teacher
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2 BORISOV et al.

Valery Vasil’evich Kozlov, we would like to give him credit for his constant encouragement and
emphasize his role in directing our interest to this field.

First of all let us take a quick look at V.V. Kozlov’s achievements in the vortex hydrodynamics.
On the one hand we should mention his works concerned with the general vortex theory [49] in
which Valery Vasil’evich (V. V. ) attempts to look through the prism of the general concepts of this
theory at various problems from optic, thermodynamics, quantum mechanics and other fields. In
particular, V. V. has elaborated a new approach to integration of Hamiltonian system (an extension
of the Hamilton–Jacobi method). On the other hand many of his recent publications address the
development of the “weak limit” theory and its application to the study of asymptotic behavior
and statistical properties of large clusters of point vortices.

In addition to these two lines of investigation, V.V. Kozlov has a long-standing interest in the
classical problem of motion of a rigid body in an ideal fluid. Among Kozlov’s papers dealing with
this topic we mention the following: study of integrability of the equations of motion [51], the falling
motion of a heavy plate in an ideal fluid [45], motion of a heavy 2D rigid body with circulation
around it [46], motion of a body in a resisting medium [47]. Starting with the “most trivial” model of
inviscid ideal fluid and then introducing new effects (such as circulation, dissipation, and vorticity),
V. V. obtained more and more realistic models for analytical treatment of motion of bodies in real
medium. This naturally led him to the problem of dynamical interaction between point vortices
and rigid bodies.

It is known from the classical hydrodynamics that vortices shed from sharp edges of a body
and then form rather curious vortical structures (e.g., Karman’s wakes). Nevertheless, in spite of
the ample literature on the subject (dealing for the most part with numerical analysis of various
empirical models), until quiet recently there have been no rigorous analytical expressions for the
hydrodynamic reaction that point vortices exert on the body. It is also well known that the formation
of new vortices (the very process of shedding) cannot be explained within the realm of the ideal-
fluid model. At the same time, this model provides a fairly good description of interaction between
the body and the already shed vortices. So we hope that author’s strict analytical results in this
direction are both of theoretical interest and are useful for verification of more complicated models.

The use of point vortices in obtaining a more realistic model of interaction between a body
and the ambient medium was illustrated by V.V. by the following popular example. Consider a
moving car with a small flag on the hood. The flag is made of a rough, almost inflexible material
and can be thought of as a stiff rectangular piece of cardboard which can rotate about the
vertical axis. When the car moves at a low speed, the flag is in equilibrium: its plane is aligned
with car’s velocity. As soon as the speed exceeds a certain critical value, this equilibrium loses
stability: the flag starts to oscillate about the vertical. This phenomenon, the birth of a limit
cycle from an unstable equilibrium, is referred to as the Hopf bifurcation. Kozlov tried to obtain
this limit cycle analytically by introducing circulation and dissipative effects (using Rayleigh’s
dissipation function), but all in vain: the behavior of the flag changed (new equilibriums emerged),
but oscillations never occurred. In this connection, V. V. suggested that, despite everything, the
existence of the oscillation regime can be proved analytically if the shedding of vortices from the
flag’s rear edge is taken into consideration. Thus, the oscillation is due to the interaction between
the flag and the point vortices in the incident flow.

From the preceding it is now clear why V. V. became interested in the problem of falling motion
of a rigid body (e.g. a plate) in an ideal fluid in the presence of point vortices. This is precisely
the problem V.V. posed about 14 years ago to one of the authors (S.M. Ramodanov). In this
general statement, this problem remains unsolved. (In this connection, a mention should be made
of a recent intriguing paper [48], which addresses this problem: the shedding of vortices in a
prescribed manner from body’s edges is postulated, the effect on the falling body is calculated
numerically and in particular it is shown that due to the vortices the broadside-on fall can
become unstable.) Adopting some simplifications (according to which there is just one vortex,
the body is a circular cylinder and there is no gravity), S.M. Ramodanov derived the equations of
motion for the “body+vortices” system and partly investigated its behavior. Upon inspection of
numerically plotted orbits, Ramodanov came to the conclusion that the system of a circular cylinder
interacting with a single point vortex is integrable, yet he failed to prove that. In its turn Kozlov
asked for assistance from A.V. Borisov and I. S.Mamaev. It should be noted that exploration of
integrability in vortex dynamics is rather specific and requires a sound knowledge of the theory
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of Poisson structures, Lie algebras, and modern methods of reduction of dynamical system. With
this technique the determination of an additional first integral (of course, for integrable systems)
is almost straightforward. Here is how A. V.Borisov, I. S.Mamaev and S.M. Ramodanov, owing
to V. V.Kozlov, became a team and soon proved the predicted result. Since then we have worked
together and solved a number of interesting problems being inspired by V.V.: motion of a body
with circulation [20], interaction of several rigid bodies in an ideal fluid [22, 50], etc. In the limit
of infinitely small bodies new concepts of massive vortices [22, 38] and dynamical advection [6]
were introduced. The analysis of motion of two spheres in an ideal fluid [50] stimulated further
investigation on non-linear reduction (the Poisson bracket of phase variables is not their linear
combination).

This paper addresses a class of problems which involves the dynamical interaction of a rigid
body with point vortices on the surface of a two-dimensional sphere. Our analysis is strongly based
on XIX and XX century fundamental works on hydrodynamics in curved spaces and, at the same
time, this paper is a natural progression of the author’s previous research on interaction of rigid
bodies and point vortices in a plane, initiated by V. V.Kozlov.

INTRODUCTION

The investigation of flows of an ideal incompressible fluid with the velocities of the fluid particles
parallel to a certain plane (so-called plane-parallel flows) is a classical, well-elaborated area of
fluid dynamics. In contrast, the problem of fluid motion over an arbitrary two-dimensional surface
appears to be poorly studied. The earliest investigations of the motion of a curved fluid layer
trace back to the second half of the 19th century; i.e., to electrodynamical studies by Beltrami,
Boltzmann, Kirchhoff, Umov, etc. (parallels between electrodynamics and fluid mechanics were
discussed in detail, e.g., even by Poincaré [36]); however, these studies are restricted to the case
where a single-valued potential exists, i.e., the case of irrotational flows.

The first systematic study of vortical fluid motion on two-dimensional surfaces was done by the
Russian mechanician I. S. Gromeka [7]. He postulated the very concept of point vortices (invoking
hydrodynamic considerations), derived the equations of their motion (restricting himself, however,
to the cases of a sphere and a circular cylinder), and analyzed, in particular, the problem of motion
of a point vortex in bounded regions on a sphere [7]. Some his results were independently obtained
by modern researchers (see, e.g., Kidambi and Newton [30] and Crowdy [27]).

The famous German scientist E. Zermelo (widely known for his fundamental achievements in
the set theory and works on statistical mechanics) undertook the most complete and systematic
investigation of two-dimensional fluid mechanics. Studies in vortical fluid mechanics were the subject
of his dissertation, which consists of two parts [43, 44] (only the first of which has been published).
A detailed discussion of Zermelo’s dissertation in a scientific–historical context was given by Borisov
et al. [3].

Gromeka’s studies were principally aimed at obtaining the equations of motion of point vortices
over a spherical surface. As for Zermelo, his investigation is a fundamental construction of two-
dimensional fluid mechanics; he considers the flow of an ideal fluid over an arbitrary surface and
proves analogs of the basic theorems of the classical fluid mechanics on a plane, (the Bernoulli
integral, the Helmholtz theorem, an the conservation of energy). Only upon a comprehensive
development of general theory [43, § 1], Zermelo concentrates on the problem of motion of point
vortices [43, § 2], [44]. His study [44] (which is scientifically highly valuable but exists only as a
hand-written manuscript; see [3]) presents a detailed investigation of the problem of motion of
three point vortices on a sphere; this problem is reduced to quadratures, and a general view of
motion is formed using the theory of elliptic functions (which was evolved in detail at Zermelo’s
time but has been largely forgotten by now).

Zermelo also obtained for the first time a Hamiltonian form of the equations of motion of
point vortices. Similar equations were derived in the 1970s by V.A. Bogomolov [1]. In the modern
literature, Bogomolov’s studies [1, 2] are cited as historically the first systematic investigations of
the dynamics of point vortices on a sphere; however (see [3]), as we can see, these problems were
rigorously analyzed about a century earlier by Zermelo and Gromeka. We also note that many other
results presented in Zermelo’s dissertation were independently obtained and developed in modern
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studies (e.g., [16, 24, 31]). An alternative hydrodynamic model of the motion of point vortices on
a sphere is proposed in [15].

An attempt of finding the equations of motion of point vortices over a surface of revolution was
made by Hally [29], while Boatto and Koiller consider in their preprint [14] the general case of
motion on surfaces. The results obtained in [14, 29] are largely tentative.

Here, we briefly describe the ideas of and methods used by Gromeka and Zermelo [7, 43, 44],
whose approaches to the problem of motion of ideal fluid over a surface differ in their ideological
backgrounds. We will also develop here these approaches considering two model problems:

(1) the motion of a circular rigid body (spherical segment) over a spherical surface with the
presence of circulation and

(2) the motion of a circular rigid body interacting with point vortices.

For a plane, various forms of the equations of motion that describe a planar interaction between
a rigid circular cylinder and vortices in an ideal fluid were recently (nearly simultaneously) obtained
[38–40]. A Hamiltonian form of these equations of motion with a nontrivial Poissonian structure
was found and the integrability of the equations of motion of a circular cylinder interacting with a
point vortex was noted [21, 23]. A different Hamiltonian structure of the equations of motion was
also found [40]. The relationship between these two Poissonian structures is investigated in a recent
review article [42].

1. FLUID DYNAMICS ON TWO-DIMENSIONAL SURFACES
1.1. The Dynamics of Ideal Fluid on Two-Dimensional Surfaces

Equations of motion in an Eulerian form. Let S be a two-dimensional surface with a metric
ds2 = Edξ2 + Gdη2. The motion of a point with a mass m over S under the action of force with a
potential mV is governed by the regular Lagrangian equations

d

dt

(
∂L

∂ξ̇

)
=

∂L

∂ξ
,

d

dt

(
∂L

∂η̇

)
=

∂L

∂η
, (1.1)

where L = m
2 (Eξ̇2 + Gη̇2) − mV .

Remark 1. As a rule, we assume here that S is a two-dimensional surface immersed in three-
dimensional Eucledian space, although this constraint is not necessary with our approach.

It is known (and also noted by Zermelo in his study) that a transition from the equations of
motion of discrete masses (1.1) to the equations of motion of ideal fluid requires

– replacing the mass m with the surface density ρ(ξ, η) and
– adding the pressure gradient p(ξ, η) to the right-hand side of the equations.

Thus, we finally obtain

d

dt

(
u
√

E
)

+ u2
√

E
∂(1/

√
E)

∂ξ
+ v2

√
G

∂(1/
√

G)
∂ξ

= −1
ρ

∂p

∂ξ
− ∂V

∂ξ
,

d

dt

(
v
√

G
)

+ u2
√

E
∂(1/

√
E)

∂η
+ v2

√
G

∂(1/
√

G)
∂η

= −1
ρ

∂p

∂η
− ∂V

∂η
, (1.2)

where u = ξ̇
√

E and v = η̇
√

G are the components of the particle velocity in the directions
of the coordinate lines ξ and η, and the total derivative with respect to time has the form
d
dt = ∂

∂t + u√
E

∂
∂ξ + v√

G
∂
∂η , V being the volumetric potential of the external forces.

To obtain a closed system, we have to complement equations (1.2) with the continuity equation

√
EG

∂�

∂t
+

∂(u�
√

G)
∂ξ

+
∂(v�

√
E)

∂η
= 0. (1.3)
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From here on, we will everywhere assume that the barotropy condition is satisfied, viz., the
pressure p and density ρ are related by the conditions that dp

ρ is again the differential of a certain
function P , i.e.,

1
ρ

∂p

∂ξ
=

∂P

∂ξ
,

1
ρ

∂p

∂η
=

∂P

∂η
.

Therefore, in the case of borotropy, the differential of the function Φ = P + V appears in the
right-hand side of equation (1.2).

Remark 2. The barotropy condition is necessarily satisfied for incompressible fluid, ρ = const.

Equations of motion in the Gromeka–Lamb form. The Helmholtz theorem. We rewrite
equations (1.2) in a somewhat different form to obtain an analog of the Cauchy–Lagrange integral,
from which, in turn, we will be able to express the pressure of the fluid. We introduce the vorticity
of the fluid motion as

Ω =
1√
EG

( ∂

∂ξ

(
v
√

G
)
− ∂

∂η

(
u
√

E
))

(1.4)

and use (1.2) to obtain equations analogous to those known in classical fluid mechanics as the
Gromeka–Lamb equations,

∂u

∂t
= Ωv − 1√

E

∂

∂ξ

(
Φ +

u2 + v2

2

)
,

∂v

∂t
= −Ωu − 1√

G

∂

∂η

(
Φ +

u2 + v2

2

)
.

(1.5)

Equations (1.5) and the continuity equation (1.3) can be used to easily deduce a statement referred
to by Zermelo as the Helmholtz theorem.

Theorem 1. For a barotropic flow of an ideal, incompressible fluid in a potential field of mass
forces, the circulation ΓC =

∫
C

u
√

E dξ + v
√

Gdη along a closed curve C consisting of the same

fluid particles remains invariable in time.

This theorem (for a planar case) is more widely known in the literature [34] as the Thomson
theorem. The generally known Helmholtz theorem on the vorticity transfer by the flow follows from
the former as a simple consequence.

Incompressible fluid. The stream function. We now dwell on the case of a incompressible,
homogeneous fluid (ρ = const). Assume that there are no mass forces V = 0 and, therefore, Φ = p

ρ .
By analogy with the planar case, we introduce a stream function ψ(ξ, η). We fix a point O on S;
then we can set ψ at point A equal to the fluid flux through the curve connecting O and A:

ψ(A) =
∫

OA

vn ds,

where vn is the velocity component normal to the curve OA. In view of the incompressibility of the
fluid, this flux has the same value for all homotopic curves connecting O and A. As on the plane,
the velocity of fluid particles is equal to the skewed gradient of the stream function:

(u, v) = J∇ψ,

where J is the operator of rotation by 90 degrees; alternatively, in a coordinate notation,

u =
1√
G

∂ψ

∂η
, v = − 1√

E

∂ψ

∂ξ
. (1.6)

Therefore, the vorticity (1.3) and stream function ψ are related by the equation

Ω = −Δψ, (1.7)
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where

Δ =
1√
EG

( ∂

∂ξ

(√
G

E

∂

∂ξ

)
+

∂

∂η

(√
E

G

∂

∂η

))
(1.8)

is the Laplace–Beltrami operator on S. We can use (1.3), (1.5), and (1.7) to show [43] that the
vorticity Ω satisfies the partial differential equation

∂Ω
∂t

=
1√
EG

(
∂ψ

∂η

∂Ω
∂ξ

− ∂ψ

∂ξ

∂Ω
∂η

)
, (1.9)

an analog of the Helmholtz equation for the case of a plane. We also note that, in view of (1.7),
equation (1.9) is a third-order partial differential equation that must be satisfied by the stream
function of ideal incompressible fluid, ψ(ξ, η, t).

Potential flows. If there is no vorticity (Ω = 0), the flow has a velocity potential ϕ,

u =
1√
E

∂ϕ

∂ξ
, v =

1√
G

∂ϕ

∂η
, (1.10)

and the stream function ψ and the potential ϕ are harmonic conjugate functions on S, i.e.,

Δϕ = Δψ = 0,

∂ϕ

∂ξ
=

√
E

G

∂ψ

∂η
,

∂ϕ

∂η
= −

√
G

E

∂ψ

∂ξ
.

(1.11)

The Cauchy–Lagrange integral. Under the assumption of constant vorticity, an analog of
the Cauchy–Lagrange integral can easily be obtained from (1.5) (to the point, it was not noted by
Zermelo). We find (at ρ = 1) from (1.5) and (1.7) that

∂

∂ξ

(
p +

u2 + v2

2

)
= Ω

∂ψ

∂ξ
+

√
E

G

∂

∂η

(∂ψ

∂t

)
,

∂

∂η

(
p +

u2 + v2

2

)
= Ω

∂ψ

∂η
−

√
G

E

∂

∂ξ

(∂ψ

∂t

)
.

(1.12)

Since we have Ω = const for the vorticity, it can be found from (1.7) that Δ∂ψ
∂t = 0, i.e., the following

statement is valid:

Proposition 1. Let ψ(ξ, η, t) be the stream function of barotropic flows on an arbitrary two-
dimensional surface of an incompressible fluid with Ω = const; then the function ∂ψ

∂t is harmonic.

Consider a function ϕ(ξ, η, t) such that ∂ϕ(ξ,η,t)
∂t is a function harmonic on S and conjugate to

∂ψ(ξ,η,t)
∂t (the fact that the function ∂ψ

∂t is harmonic in the case of constant vorticity was noted
repeatedly [34]). In view of the last two relationships (1.11), the right-hand sides of equations
(1.12) are derivatives of the same function; therefore, the following theorem is valid:

Theorem 2 (The Cauchy–Lagrange integral). For barotropic flows of an ideal, incompress-
ible fluid with a constant vorticity Ω = const, the relationship

p +
u2 + v2

2
= Ωψ − ∂ϕ

∂t
+ f(t). (1.13)

holds.

Note that the arbitrary function of time, f(t), can vanish if an appropriate gauge transformation
ϕ → ϕ +

∫
f(t) dt, which does not affect the velocity field, is applied.
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1.2. Point Vortices on Two-Dimensional Surfaces

Let us survey once again certain currently known results concerning surfacial motion. As already
noted, the studies [7] and [43, 44] present ideologically different approaches to defining a point vortex
on the sphere. The motion of point vortices over a sphere is discussed in detail in [16, 24, 25, 35].
A model of vortical motion over the sphere differing from the classical one was recently introduced
in [15]. As we noted, the equations of motion of point vortices over surfaces of revolution were
obtained by Hally [29] under the assumption that the total intensity of the vortices is zero and the
solution of the Poisson equation (1.7) is known. A generalization of these particular results to the
case of an arbitrary compact two-dimensional surface, interesting from the standpoint of differential
geometry, is given in the recent study [14]. Note also [32], where the case of Lobachevsky’s plane H2

is considered along with the case of the sphere S2. In [14], the hypothesis that the vortical dipole
moves over a two-dimensional surface in a geodesic [32] is substantiated. However, little is currently
known even on the motion of a single point vortex (self-advance) on an arbitrary two-dimensional
surface (possibly, a solution for a triaxial ellipsoid can be obtained in elliptic quadratures). We
consider various possible situations in greater detail.

Point vortices on compact surfaces. A vortical flow on a compact surface S has the following
particular property distinguishing it from those on a plane:

the total vorticity over the whole surface is zero.

Indeed, let D be a region in S. According to the Stokes theorem, the circulation of velocity along
the boundary ∂D is equal to the double integral of the vorticity Ω over D; on the other hand, it is
equal to the double integral of Ω over M/D, with the sign reversed; thus,

∫
S

Ω dS = 0.

Therefore, vorticity cannot be concentrated at one point of a compact surface. A point vortex
can exist on S only with the presence of

1. either another vortex with the same but sign-reversed intensity [1, 7],

2. or a background vorticity [14, 43, 44].

Equation of motion of point vortices on a plane. Thus, prior to explicitly writing the
equations of motion for a given surface S, it is necessary to solve the Poisson equation

Δψ = Ω, (1.14)

where Ω is a function constant on S (except for the points where the vortices are located) and Δ
is the Beltrami–Laplace operator on S.

Remark 3. More precisely, Ω is the sum of Dirac δ functions and a certain constant.

The motion of a point vortex s0 = (ξ0, η0) can be described in terms of a “desingularized” stream
function known in Riemann geometry as the Robin function [26],

ξ̇0 =
1
G

∂ψR(s0)
∂η0

, η̇0 = − 1
E

∂ψR(s0)
∂ξ0

, ψR(s0) = lim
s→s0

(
ψ(s, s0) −

ln d(s, s0)
2π

)
, (1.15)

where the stream function ψ is a solution of the Poisson equation (1.14) with a singularity at the
point s0 and d(s, s0) is the geodesic distance from s to s0. It is noted in [14] that, in contrast to
the case of a plane or sphere, a point vortex on a varying-curvature surface S can move under the
action of the flow produced by this vortex itself.

Note in this context that the explicit solution of equation (1.14) is known only for very few
surfaces. In particular, the equations of motion of vortices on a triaxial ellipsoid have not yet been
found in an explicit form. Let us also mention the study [26] in this connection, which considers
the motion of vortices over the surface of an ellipsoid of revolution obtained by slightly perturbing
a sphere, x2 + y2 + x2/(1 + ε) = R2. Approximate, to terms of order O(ε2), equations of motion of
vortices are derived in [26]; the cases of two and (numerically) three vortices are also investigated.
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The Zermelo–Bogomolov point vortex on the sphere. On the unit sphere x2 + y2 + z2 = 1,
we introduce spherical coordinates x = sin θ cos λ, y = sin θ sinλ, z = cos θ and seek a solution of
equation (1.14), which now becomes

1
sin θ

( ∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

∂

∂λ

( 1
sin θ

∂ψ

∂λ

))
= −Ω, (1.16)

in the form ψ = ψ(θ) setting Ω = const. Then, we immediately find

ψ = −2Ω ln sin
θ

2
. (1.17)

The circulation of the fluid along the parallel specified by the angle θ is −2πΩ(1 + cos θ).

Definition ([43]). We will say that a point vortex of intensity 2πΩ is located at the point θ = 0 if
the flow of the fluid is described by the stream function (1.17). Note that the condition of zero total
vorticity is satisfied in this case.

Remark. If this “naive” definition of the point vortex is adopted, it is not easy to prove that the
vortices move together with the flow. The proof suggested by Zermelo [44] can hardly be called
transparent. Unfortunately, for unknown reasons, even some classical textbooks assume that this
statement is obvious and does not require any proof. It is more correct to define point vortices
using a limiting process, i.e., first considering the dynamics of vortical spots of a small radius r and
a constant vorticity Ω and then requiring that r → 0 and Ω → ∞ with the product Ωr2 remaining
constant (see [7, 11, 14]).

For the system of several vortices with spherical coordinates (θi, λi) and intensities Γi = 2πεi,
the stream function is the sum of functions of the form (1.17). We assume that each vortex moves
with a velocity induced by the other point vortices, thus representing the equations of motion in
the form

εi sin θi
dθi

dt
= −∂H

∂λi
, εi sin θi

dλi

dt
=

∂H

∂θi
, i = 1, . . . , n. (1.18)

Here, the Hamiltonian function H is

H =
∑
i<j

εiεj ln sin
rij

2
, (1.19)

where rij = 2R2(1 − cos θi cos θj − sin θi sin θj cos(λi − λj)) is the chord distance between the ith
and jth vortices.

As already noted, Zermelo’s equations are identical in their form with Bogomolov’s equations,
which read as [1]:

θ̇k = {H, θk}, λ̇k = {H,λk}, {λk, cos θk} =
δik

R2Γi
;

here, H differs from (1.19) only by an unimportant factor.
Antipodal point vortices on the sphere. Except the solution (1.17), equation (1.16) also

admits a solution of the form

ψ = α · ln
(

tg
θ

2

)
, α = const,

which corresponds to the presence of vortices of opposite intensities at the poles, with Ω = 0 at all
other points of the sphere.

It turns out that such a vortex pair can be considered a whole hydrodynamic object, so-called
antipodal vortex.

The motion of antipodal point vortices is investigated in the recent study [15]; there, it is
particularly shown that, if two vortices of opposite intensities are initially located at the ends of
the same diameter, they will preserve this arrangement in the course of motion. In addition, a
classification of motions is given in [15] for the integrable problem of three antipodal vortices.
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Studies by I. S. Gromeka. In contrast to Zermelo, I. S.Gromeka comes to considering vortical
motions on two-dimensional surfaces from studying flows of ideal fluid in three-dimensional space,
which are parallel to a certain family of surfaces.

We choose an orthogonal system of curvilinear coordinates ξ1, ξ2, ξ3, in which the considered
family of surfaces is specified by the equation ξ3 = const and whose metric has the form

ds2 = h2
1dξ2

1 + h2
2dξ2

2 + h2
3dξ2

3 ,

where hi are functions of the coordinates (the Lamé coefficients). We also assume, following
I. S.Gromeka, that

h3 = const. (1.20)

Remark. It is well known [28] that any two-dimensional surface can be embedded in a triorthog-
onal family; i.e., orthogonal curvilinear coordinates can be specified in the neighborhood of any
surface. At the same time, not any one-parameter family of surfaces can be completed to forming
a triorthogonal family (the corresponding families are termed the Lamé families).

Let u1, u2, u3 be the components of the fluid-particle velocity in the chosen coordinate system;
then the condition of the flow being parallel to the family ξ3 = const can be represented as

u3 = 0,
∂

∂ξ3
(h1u1) =

∂

∂ξ3
(h2u2) = 0. (1.21)

Under the above assumption (1.20) on the family of surfaces, it can be easily shown that, if the
flow is initially parallel to the surfaces ξ3 = const, it will remain parallel to ξ3 = const at any later
time.

By substituting (1.21) into the equations specifying the vorticity ω = rot v of the fluid,

ωi =
∑
j,k

εijk
1

hjhk

∂hkuk

∂ξj
,

(where εijk is the antisymmetric Levi-Civita tensor), we find

ω1 = ω2 = 0, ω3 =
1

h1h2

(
∂(h2u2)

∂ξ1
− ∂(h1u1)

∂ξ2

)
= Ω(ξ1, ξ2, ξ3). (1.22)

We use the continuity equation for incompressible fluid,
∑

i

∂

∂ξi

(
h1h2h3

hi
ui

)
= 0,

and determine the stream function ψ for the flows parallel to the surfaces ξ3 = const according to
the formulas

u1 = − 1
h2h3

∂ψ

∂ξ2
, u2 =

1
h1h3

∂ψ

∂ξ1
.

Thus, to find the flows of an incompressible fluid parallel to the surface ξ3 = const with a given
vorticity (1.22), it is necessary to solve the equation

1
h1h2

(
∂

∂ξ1

(
h2

h1

∂ψ

∂ξ1

)
+

∂

∂ξ2

(
h1

h2

∂ψ

∂ξ2

))
= Δψ = −h3Ω(ξ1, ξ2, ξ3),

where Δ is the Laplace–Beltrami operator on S; the variable ξ3 here appears as a parameter.
The simplest surfaces satisfying the above-formulated conditions are

– parallel planes;
– coaxial circular cylinders;
– concentric spheres.

The curl vector of the velocity (1.22) is normal to these surfaces.
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Let us dwell on the case of the sphere. The Lamé coefficients for the regular spherical coordinates
(r, θ, ϕ) in R

3 are hr = 1, hθ = r, hϕ = r sin θ, i.e., the conditions (1.20) is satisfied.

Remark. I. S.Gromeka himself uses either a stereographic projection or the coordinates of a
Mercator projection, for which h1 = h2. However, this has obviously no effect on the result.

Later, I. S.Gromeka assumes that

Ω = 0 everywhere but at the points where the vortic4es are located.

This assumption certainly eliminates the background vorticity. In view of this, I. S.Gromeka
concentrates on the problem of the motion of n point vortices of arbitrary intensity in a subregion
of the sphere bounded by motionless, impermeable walls.

In this case, the total vorticity over the whole sphere remains zero due to mirror images of the
vortices with the opposite vorticity outside the subregion considered. Thus, the limiting assumption
that the total vorticity Ω is zero, introduced by Gromeka himself, prevented him from obtaining
the equations of motion of the vortices on the entire sphere (1.18) by shrinking the boundary of
the region to a point.

2. THE MOTION OF A CIRCULAR RIGID BODY WITH A CIRCULATION ON S2

It is well known [33] that, in regular Eucledian space E3 and on the plane R
2, the motion of

a rigid body in an infinite volume of ideal incompressible fluid that flows irrotationally and rests
at infinity can be described by a finite-dimensional Hamiltonian system of equations known as the
Kirchhoff equations. Chaplygin [12] has shown that, in the case of a plane-parallel motion of a rigid
body with the presence of a constant circulation around the body, terms linear in velocities appear
in the right-hand sides of the Kirchhoff equations. (Chaplygin has also proved the integrability of
this system.) The study [20] contains a proof of the nonintegrability of the Chaplygin system in the
case of a gravitational field present and a brief survey of the known results. Let us note equations
similar to the Chaplygin equations for the particular case where the moving body is bounded by a
circular contour and circulation is present on the surface of a two-dimensional sphere.

Equation of motion. Let the sphere be specified in a motionless Cartesian coordinate system
by the equation

x2 + y2 + z2 = R2

and let the body be a circular spot (spherical segment) of radius R1 (see Fig. 1); we assume that,
outside the body, the sphere is covered with a homogeneous, incompressible fluid (and its density
is equal to unity). Let the circulation of the fluid around the body be Γ∗ = const; according to the
Helmholtz theorem (see Section 1), it remains conserved in the course of motion. Let r0 be a vector
connecting the center of the sphere with the center of the body.

z

y

x

x
1

z
1

y
1

r
0

O

1
R

Fig. 1.

We will obtain the equations of motion of the body in view of the fact that only the normal
reaction of the constraint (on the side of the sphere) and the hydrodynamic pressure act on the
body. We fix the moving coordinate system Ox1y1z1 to the body (see Fig. 1) assuming that the Oz1
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axis runs through its center. It can be seen from the figure that the motion of the two-dimensional
body over the sphere is equivalent to the motion of a normal (three-dimensional) body with a
fixed point coinciding with the center of the sphere, O. We denote the moments of inertia of the
equivalent three-dimensional rigid body as A,B,C and write the theorem on angular-momentum
changes in the projections onto the moving axes (the Euler equations):

Aω̇1 + (C − B)ω2ω3 = M1, Bω̇2 + (A − C)ω3ω1 = M2, Cω̇3 + (B − A)ω1ω2 = M3. (2.1)

Here, ωi and Mi are the projections of the (three-dimensional) body’s angular velocity and of the
external-forces moment onto the moving axes Ox1y1z1. We assume the mass distribution in the
body to be arbitrary, so that, generally, A �= B.

Since the direction of the normal reaction acting on the body runs through the center of the
sphere, its moment is zero; the moment of the pressure forces exerted by the fluid,MMML, is calculated
in Appendix (Section 5); it is equal to

MMML = −ar0 × a0 − Γ∗R + d

2
v0,

a = πR2
1, d =

√
R2 − R2

1,

(2.2)

where v0 and a0 are the velocity and acceleration of the body’s center, respectively. The first term
is due to the effect of associated masses (as in the planar case, it is proportional to the acceleration
of the body), and the second term is an analog of Zhukowski’s lifting force.

We write the velocity v0 and acceleration a0 in terms of the angular velocity of the body as

v0 = ω × r0, a0 = ω̇ × r0 + ω × (ω × r0) (2.3)

to obtain the equations of motion in the form

Iω̇ + ar0 × (ω̇ × r0) =
(
Iω + ar0 × (ω × r0)

)
× ω − Γ∗R + d

2
ω × r0, (2.4)

where I = diag(A,B,C).
In view of the fact that r0 = (0, 0, R) in the chosen moving coordinate system, we represent

equation (2.4) in the form

Ĩω̇ = (Ĩω + k) × ω, (2.5)

where Ĩ = diag(A + aR2, B + aR2, C), k =
(
0, 0,Γ∗ R(R+d)

2

)
.

A comparison of (2.5) with the equations of the equilibrated gyrostat without an external field [4]
leads us to the conclusion that the following theorem is valid:

Theorem. If an axisymmetric (two-dimensional) rigid body (with an arbitrary mass distribution)
on a sphere is submerged in an ideal incompressible fluid with a nonzero circulation, the dynamics
of this body is equivalent to the dynamics of a top in the Zhukowski–Volterra case provided that the
gyrostatic moment is directed along the principal axis.

Remark. As is known, the Zhukowski–Volterra system describes free motion of a rigid body inside
which there is a balanced, rotating rotor with a constant gyrostatic-moment vector k. Zhukowski [8]
noted an analogy between this problem and the dynamics of a rigid body with cavities that are
not singly connected (of a torus type) and are filled with a potentially moving nonideal fluid.
Our theorem reveals another possible analogy, with a Zhukowski–Volterra system, which is also
hydrodynamic.

The following natural generalization of this result appears to be valid;

Conjecture. The equations describing the motion of an arbitrary body on a sphere with a nonzero
circulation are equivalent to the Zhukowski–Volterra system with an arbitrary gyrostatic-moment
vector.
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12 BORISOV et al.

The first integrals. The system (2.5), as is known [4], admits two first integrals — energy and
squared momentum:

H =
1
2
(ω, Ĩω), F = (Ĩω + k, Ĩω + k).

Therefore, this system is integrable; it is qualitatively analyzed in the book [4], where a detailed
bibliography concerning various aspects of the dynamics of the Zhukowski–Volterra system is also
presented. Let us consider one very simple case in greater detail.

The case of dynamical symmetry. In this case, A = B; in particular, if the mass is uniformly
distributed in the body,

μ = (C − A)(ω, r0)/R2,

A = m
4R3 − d

(
3R2 + d2

)
6(R − d)

, C = m(d + 2R)(R − d).

The equations of motion (2.5) in this case also admit the linear integral

ω3 = const. (2.6)

To find the trajectory of the motion, we utilize the fact that the momentum vector Ĩω + k is
constant in the motionless axes Oxyz; we use the integral (2.6) to represent it in the form

Ĩω + k = λω + μr0,

λ = A + aR2, μ = Γ̄d +
C − A − aR2

R
ω3.

(2.7)

Since λ and μ are scalar constants, this form remains unchanged in the motionless axes. We take
the cross product of (2.7) by r0 and, taking into account the relationship ṙ0 = ω × r0, find

λṙ0 = K × r0,

where K is a constant vector. Therefore, the body moves at a constant velocity v0 about the vector
K in a circle of radius

λRv0√
μ2R4 + λ2v2

0

� R.

Thus, we note that the presence of a circulation prevents the body from moving in a geodesic:
the body moves in a great circle only in the limit of v0 → ∞.

3. THE COUPLED MOTION OF A RIGID BODY WITH A CIRCULATION AND POINT
VORTICES ON S2

Equations of motion. Assume that, under the conditions of the above-considered problem, not
only the body but also a vortex of intensity Γ moves over the surface of the sphere; as previously,
the contour of the body is circular and the mass distribution is arbitrary. The position of the
vortex is specified by the position vector issuing from the center of the sphere, r1. In this case, an
additional term appears in the expression (2.2) for the moment of the pressure forces of the fluid
(see Appendix for the derivation); it is proportional to the absolute velocity of the vortex itself, v1,
and to the velocity of a certain point, ṽ1, so that

MMML = −ar0 × a0 − Γ∗R + d

2
v0 + ΓR(ṽ1 − v1),

r̃1 = C0r0 + C1r1, C0 =
Rd − (r0, r1)
R2 − (r0, r1)

, C1 =
R(R − d)

R2 − (r0, r1)
.

(3.1)

The geometrical meaning of this vector is clarified in Fig. 2, where ri
1 is the position vector of the

point inversely symmetric to the vortex, r1; thus, in a stereographic projection, their images are
inversely symmetric with respect to the projection of the body’s boundary.
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Fig. 2.

In the limit of R → ∞, the vector r̃1 changes into ri
1 and expression (3.1) becomes completely

analogous to the expression for the force acting on the circular cylinder in the planar case [38].
In the motionless coordinate system, the velocity of the vortex is determined by the desingular-

ized stream function (the Kirchhoff–Routh function) according to relationships (1.15). Therefore,
in the moving system Ox1y1z1 fixed to the body, the evolution of the vortex position is described
by the equation

ṙ1 = r1 × ω − 1
R

r1 ×
∂ψR

∂r1
, (3.2)

where (see Appendix)

ψR =
d − R

R2 − (r0, r1)
(r1 × v0, r0) +

Γ
4π

ln
(
(r0, r1) − Rd

)

− Γ̄
4π

ln
(
(r0, r1) − R2

)
,

(3.3)

and ∂ψR
∂r1

is the vector whose components are the derivatives of the function ψR with respect to the
corresponding coordinates of the vector r1. We also note that the circulation Γ∗ around the body
can be found if we place a point vortex in its center, with an intensity Γ̄ specified by the formula

Γ̄ = Γ∗ 2R
d + R

. (3.4)

Equations (2.1) (in which it is necessary to set Mi = ML
i , where ML

i are defined according to
(2.7)) in combination with (3.1) form the complete system of equations describing the motion of the
body–vortex system in the moving axes Ox1y1z1. It can easily be shown that these equations can
be represented in a nearly Lagrangian (but not Lagrangian, as is typical of the vortical-dynamics
problems) form.

Proposition. Equations of motion of a rigid body bounded by a circular contour and of a vortex
on the surface of a two-dimensional sphere have the form

d

dt

(
∂L

∂ω

)
=

∂L

∂ω
× ω, Γṙ1 = − 1

R
r1 ×

∂L

∂r1
,

L =
1
2
(ω, Ĩω) + (k,ω) + Γψ̃R,

ψ̃R = ψR −R(ω, r1)+ d(ω, r0)=−R(ω, r̃1 −r1)+
Γ
4π

ln
(
Rd− (r0, r1)

)
− Γ̄

4π
ln

(
R2 − (r0, r1)

)
,

(3.5)
where, as before, Ĩ = diag(A + aR2, B + aR2, C), k = (0, 0,Γ∗ R(R+d)

2 ).
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Proof. According to (2.5) and (3.1), the equations of motion of a rigid body in the moving axes are

Ĩω̇ = (Ĩω + k) × ω + ΓR(ṽ1 − v1), (3.6)

where ṽ1 and v1 are the absolute velocities of the vortex and the point r̃1. On the other hand,(
∂L

∂ω

)�
= Ĩω̇ − ΓR( ˙̃r1 − ṙ1),

∂L

∂ω
× ω = (Ĩω + k) × ω − ΓR(r̃1 − r1) × ω;

we note that the velocities in the moving axes are linked to the absolute velocities via the
relationships v1 = ṙ1 + ω × r1, ṽ1 = ˙̃r1 + ω × r̃1 and arrive at equations (3.6). Similarly, equation
(3.2) for the vortex can be obtained.

Furthermore, the first term in the stream function (3.2), which describes the motion of the fluid
induced only by the displacement of the body, can be represented as

ψ
(0)
R =

d − R

R2 − (r0, r1)
(r1 × v0, r0) = R(ω, r̃1) − d(ω, r0)

and, as in the planar case [22], proves to be in a remarkable relationship with the image of the
vortex, r̃1, in terms of which the moment of the forces (3.1) exerted by the fluid on the body can
be expressed. �

The Hamiltonian form of the equations of motion and first integrals. We carry out
the Legendre transformation of system (3.5) with respect to the angular velocities ω:

M =
∂L

∂ω
= Ĩω + k̃, k̃ = k − ΓR(r̃1 − r1),

H = (M ,ω) − L =
1
2
(M − k̃, Ĩ−1(M − k̃)) − Γ2

4π
ln(Rd − (r0, r1)) +

ΓΓ̄
4π

ln(R2 − (r0, r1)).
(3.7)

A direct verification demonstrates the validity of the following
Theorem. The equations of motion of a body bounded by a circular contour and of a point vortex
on the sphere in the moving axes Ox1y1z1 can be represented in the Hamiltonian form

Ṁi = {Mi,H}, ẋ1 = {x1,H}, ẏ1 = {y1,H}, ż1 = {z1,H},

where the Hamiltonian is given by relationship (3.7), and the Poissonian structure has the form

{Mi,Mj} = −εijkMk, {x1, y1} =
1

ΓR
z1, {y1, z1} =

1
ΓR

x1, {z1, x1} =
1

ΓR
y1. (3.8)

The Lie–Poisson bracket (3.8) corresponds to the Lie algebra so(3) ⊕ so(3), is degenerate, and
has two Casimir functions (which are obviously first integrals of the equations of motion)

Φ1 = M2
1 + M2

2 + M2
3 , Φ2 = x2

1 + y2
1 + z2

1 = R2. (3.9)

We restrict the system to the symplectic sheet specified by relationships (3.9) to obtain a Hamil-
tonian system with two degrees of freedom. According to the Liouville theorem, its integrability
requires another, additional (except the Hamiltonian) first integral.

Dynamically symmetric case. Assume that A = B; then the system is integrable due to the
presence of the additional, Lagrangian-type integral [4]

ω3 =
∂H

∂M3
=

1
C

(
M3 − Γ∗R(R + d)

2
+ ΓR(z̃1 − z1)

)
= const.

Corollary. The problem of the motion of a circular, dynamically symmetric body and one point
vortex on a spherical surface is Liouville-integrable.

A similar result for the plane was obtained in [5] and analyzed in detail in [22, 23, 38, 39]. Note
that, as numerical experiments show, the integrability of the system fails at A �= B, and chaotic
motions originate.
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Remark. The statement on the integrability can also be obtained in a simpler way. Rewriting the
equation of motion of the rigid body (3.6) in the motionless coordinate system and integrating it
yields

λω = ΓR(r̃1 − r1) − μr0 + K, (3.10)

where K is a vector fixed in absolute space with K2 = Φ1 (see (3.9)) and the coefficients λ and μ
are specified in (2.7). We take the cross product of equation (3.10) by r0, thus obtaining

λṙ0 = ΓRr0 × (r1 − r̃1) − r0 × K. (3.11)

The equation of motion of the vortex (3.2) in the motionless coordinate system has the form

ṙ1 = − 1
R

r1 ×
∂ψR

∂r1
. (3.12)

The system of six equations (3.11) and (3.12) for r0 and r1 has four first integrals

(a) the Hamiltonian function (3.7) in which ω should be expressed from (3.10);

(b) r2
0 = R2;

(c) r2
1 = R2;

(d) (ΓR(r̃1 − r1) − μr0 + K, r0) = const (the projection of the angular velocity onto the sym-
metry axis of the body is constant).

The system also preserves a standard measure, being thus integrable, according to the theory of
the last Jacobi multiplier.

4. MASS VORTICES

Equations of motion. Assume that the body is dynamically symmetric and let the radius of
the body approach zero, leaving its mass unchanged; we then obtain an object that, as in the planar
case [22], we will term a mass vortex. The same reasoning as in [22] shows that the dynamics of
two mass vortices in the motionless axes Oxyz is described by the equations

m1R
2r1 × r̈1 = −Γ1Rṙ1 +

Γ1Γ2

4π
r2 × r1

R2 − (r1, r2)
,

m2R
2r2 × r̈2 = −Γ2Rṙ2 +

Γ1Γ2

4π
r1 × r2

R2 − (r1, r2)
.

(4.1)

The problem of the motion of two mass vortices is, in the general case, not integrable even on
the plane [9, 14]. Therefore, system (4.1) also does not appear to be integrable. Nevertheless, it
would be interesting to qualitatively analyze equations (4.1).

Hamiltonian form and first integrals. We define the new variables

Mα = mαrα × ṙα +
Γα

R
rα, α = 1, 2, (4.2)

and rewrite equation (4.1) as follows:

Ṁα = −rα × ∂U

∂rα
, mαṙα = −rα × Mα,

U = − Γ1Γ2

4πR2
ln

(
R2 − (r1, r2)

)
.

(4.3)

It can easily be verified that these equations are Hamiltonian with the Poisson bracket (which is a
Lie–Poisson bracket specified by the algebra e(3) ⊕ e(3))

{Mαi,Mαj} = −εijkMαk, {Mαi, xαj} = −εijkxαk, α = 1, 2, i, j, k = 1, 2, 3, (4.4)
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(here, the zero brackets are omitted), and with the Hamiltonian

H =
1
2

( 1
m1

(M1,M1) +
1

m2
(M2,M2)

)
+ U. (4.5)

For the Poisson bracket (4.4), the constants of the Casimir functions should be fixed as follows:

K(1)
α = (rα, rα) = R2, K(2)

α = (Mα, rα) = R−1Γα.

It is remarkable that the equation of motion (4.3), the Poissonian structure (4.4), and the
Hamiltonian (4.5) coincide with those in the case of a conventional two-body problem on the
sphere [17]. The difference is in that, for interacting bodies, all the constants K

(2)
α = 0, while they

are proportional to the circulation in the case of mass vortices.
System (4.3) has a vector integral of the total momentum

M = M1 + M2 = const.

We also note that, in [17], results of numerical experiments are presented, which testify to the
nonintegrability of the two-body problem on the sphere with a Newtonian and a Hookian potential.

The problem of n mass vortices. These equations can be generalized without difficulties to
the case of an arbitrary number of mass vortices, the Hamiltonian assuming the form

H =
1
2

n∑
α=1

1
mα

(Mα,Mα) −
n∑

α<β

ΓαΓβ

4πR2
ln

(
R2 − (rα, rβ)

)
,

where rα is the position vector of the corresponding vortex and Mα is the momentum defimed
according to formula (4.2).

The Poisson structure is determined by the algebra
n
⊕

α=1
e(3) and has the form

{Mαi,Mαj} = −εijkMαk, {Mαi, xαj} = −εijkxαk, ijk = 1, 2, 3, α = 1 . . . n,

the corresponding Kirchhoff functions being fixed as follows:

(rα, rα) = R2, (Mα, rα) = R−1Γα, α = 1 . . . n.

The integral of the total momentum is

M =
n∑

α=1

Mα.

Remark 4. The equations of the mass vortices on the plane were independently obtained in
[9, 22, 37], where physical and hydrodynamic problems were also noted in which this model can be
used. The mass vortices on the sphere can be considered a real alternative to various known models
of vortical motions in the Earth’s atmosphere and oceans (cyclones, tornadoes, oceanic vortical
flows, etc.). This model is physically more realistic due to the consideration of the vortical-column
mass, whose presence is natural, since powerful vortical features, such as tornadoes, suck in large
foreign bodies in the course of their motion. Anyway, the development of applications and the
experimental verification of a theoretical model are decisive for its applicability. As some other
vortical models, we also note the motion of vorticity sources and vortical spots [18, 19].

APPENDIX
Stream function. The fluid flow on the sphere in a region D outside the body bounded by

the contour C (Fig. 3) is completely determined by the stream function ψ(ξ, η, t), which, as shown
above, must satisfy

– the system of differential equations

∂Ω
∂t

=
1√
EG

(
∂ψ

∂η

∂Ω
∂ξ

− ∂ψ

∂ξ

∂Ω
∂η

)
, Δψ = −Ω; (A.1)
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Fig. 3.

– the unpermeability condition at the boundary of the body, C:

(v,n)
∣∣
C
=

∂ψ

∂τ

∣∣∣
C
, (A.2)

where n and τ are the vectors normal and tangent to the boundary C and v is the velocity
vector of the corresponding point of the body’s boundary;

– the condition that, in the absence of a vortex (Γ = 0), the circulation around the contour
encircling the body is ∫

C

(v, τ ) dl = Γ∗. (A.3)

According to the superposition principle, the sought-for stream function can be represented in
the form

ψ = voxψ(0)
x + voyψ

(0)
y + vozψ

(0)
z + ψc + ψv,

where v0 = (vox, voy, voz) is the velocity of the body’s center and the terms ψc and ψv are
proportional to Γ∗ and Γ, respectively.

The fluid flow induced only by the motion of the body with the velocity v0 can be described by
the stream function

ψ(0)(r) = voxψ(0)
x + voyψ

(0)
y + vozψ

(0)
z =

d − R

R2 − (r, r0)
(r × v0, r0). (A.4)

The validity of the unpermeability condition (A.2) can be directly checked. The function ψ(0)

is harmonic (outside the body, Δψ(0) = 0) and, therefore, satisfies the condition (1.9). The
corresponding flow has zero circulation along the body’s boundary C.

Remark 5. Formula (A.4) can be empirically obtained as follows. It is known that the velocity
field produced by a circular cylinder moving over the plane is the flow induced by a dipole. Assume
that the same result holds for the sphere. First consider a flow on the plane such that the velocities
of all particles are the same. As is known, such a flow is induced by an infinitely distant dipole. If
we map this flow onto the sphere via the stereographic projection, simple rearrangements will lead
us to formula (A.4).

As in the planar case, the flow induced by the point vortex ψv can be obtained by adding an
inversely symmetric (in terms of the stereographic projection) vortex of the opposite vorticity, so
that

ψv(r) = − Γ
4π

ln
(
R2 − (r1, r)

)
+

Γ
4π

ln
(
R2 − (ri

1, r)
)
,

ri
1 =

(
R2 + d2 − 2d

R
(r0, r1)

)−1(
(R2 − d2)r1 + 2(Rd − (r0, r1))r0

)
,
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where ri
1 is the position vector of the point inversely symmetric to the vortex. The function

ψv is harmonic outside the body everywhere (except for the point r1) and, therefore, satisfies
equation (A.1).

Let us discuss the function ψc, which describes a purely circulative flow around the rigid body.
In contrast to the case of the plane, the circulations along homotopic contours encircling the body
on the sphere are generally different. As shown in Section 1.2, if a vortex of intensity Γ is placed
at the point θ = 0 on the sphere, the circulation along the parallel θ = θ0 will be Γ(1 + cos θ0)/2.
Therefore, to satisfy the condition (A.3), a point vortex should be placed at the center of the body,
and its intensity Γ̄ and the circulation Γ∗ should be linked by the relationship (3.4), so that

ψc = −Γ∗

4π
2R

R + d
ln

(
R2 − (r0, r)

)
.

The function ψc thus defined satisfies the equation Δψ = Γ̄
4πR2 in the region D and, therefore, it

satisfied equation (A.1).
Thus, the stream function is completely specified. We note in view of the following that, in the

region D, it satisfies the equation

Δψ =
Γ̄

4πR2
− Γδ(r − r1), (A.5)

where Δ is the Laplace–Beltrami operator (1.8), r1 is the position vector of the vortex, and δ(r − r1)
is the Dirac delta.

The Kirchhoff–Routh function. The absolute velocity of the vortex, v1, is given by
relationship (1.15), which can be written in Cartesian coordinates as

v1 = − 1
R

r1 ×
∂

∂r

[
ψ(r) +

Γ
4π

ln
(
R2 − (r1, r)

)]∣∣∣
r=r1

.

Upon simple rearrangements, we find that

v1 = − 1
R

r1 ×
∂ψR(r1)

∂r1
,

ψR(r1) =
d − R

R2 − (r0, r1)
(r1 × v0, r0) +

Γ
4π

ln(Rd − (r0, r1))

−Γ∗

4π
2R

R + d
ln

(
R2 − (r0, r1)

)
.

The planar analog of the function ψR(r1) is traditionally referred to in vortical dynamics as the
Kirchhoff–Routh function (see, e.g., [10]).

The moment of the fluid-pressure forces. To calculate the moment of the fluid-pressure
forces MMML exerted on the boundary of the body C, we use the theorem of the kinetic-momentum
changes. The variation in the kinetic momentum of the fluid, KL, that fills the region D (the
exterior of the contour C) is

K̇L = −MMML, (A.6)

where MMML is the sought-for moment of the fluid-pressure forces exerted on the contour C. We
set the fluid density equal to unity and represent the kinetic momentum of the fluid, KL, in the
region D as

KL =
∫∫
D

r × vds = R

∫∫
D

∇ψds,

where all the vectors are considered to be expressed in local orthogonal coordinates ξ, η on the
sphere according to the formulas

v =
1√
G

∂ψ

∂η
eξ −

1√
E

∂ψ

∂ξ
eη , ∇ψ =

1√
E

∂ψ

∂ξ
eξ +

1√
G

∂ψ

∂η
eη , r = Reξ × eη.
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In the Cartesian coordinates Oxyz, the components of the vector KL can be represented in the
form

KL
x = R

∫∫
D

(∇x,∇ψ)ds, KL
y = R

∫∫
D

(∇y,∇ψ)ds, KL
z = R

∫∫
D

(∇z,∇ψ)ds.

Note that these integrals diverge at the point r1; therefore, they should be understood in terms of
the theory of generalized functions (as principal values). We use the Stokes formula and employ a
vector notation to obtain

KC = R

∫
C

r

√
E

G
ψ′

ηdξ − r

√
G

E
ψ′

ξdη. (A.7)

Thus, in view of (A.6), the moment of the fluid-pressure forces acting on the boundary of the body
is specified by the relationship

MMML = −K̇C +
(

R

∫∫
D

rΔψds

)�
. (A.8)

Remark. The moment ML could be found by directly integrating the moment of the pressure
forces along the boundary of the body,

ML =
∫
C

r × pndl = R

∫
C

pτdl = R

∫
C

pdr,

where p is the fluid pressure expressed from the generalized Cauchy–Lagrange integral (1.13) (we
use here the relationship r × n = Rτ , which is valid for the vectors n and τ normal and tangent
to the contour on the sphere). However, the expression for ML thus obtained proves to be highly
cumbersome and to have no clear physical meaning.

We calculate the double integral in the right-hand side of (A.8) using equation (A.5) and the
relationship

∫∫
D

rds = −π(R2 − d2)r0; finally, we obtain

R

∫∫
D

rΔψds = −ΓRr1 +
d2 − R2

4R
Γ̄r0. (A.9)

Now we calculate the curvilinear integral KC given by formula (A.7). In this formula, we
sequentially substitute the function ψ with ψ(0), ψv, and ψc to directly obtain

KC

∣∣
ψ=ψ(0)= ar0 × r0, where a = πR2

1,

KC

∣∣
ψ=ψv

= −RΓr̃1,

KC

∣∣
ψ=ψc

=
Γ̄d(R + d)

2R
r0.

The coefficient a is the added mass of the circular body of radius R1. The vector r̃1 (see Fig. 2) is
defined in (3.1) (the heads of the vectors r̃1, r1, and r0 are in the same straight line).

We substitute these expressions together with (A.9) into (A.8) to obtain the following formula
for the moment:

ML = −ar0 × r̈0 + ΓR( ˙̃r1 − ṙ1) − Γ∗R + d

2
v0.
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UNRESOLVED PROBLEMS
To conclude, we formulate certain issues that would be worth further investigating based on the

results of this study.

• Studying various cases of the motion of a rigid body and point vortices on the sphere. In
particular, analyzing the problem of the motion of an arbitrary two-dimensional body and
several vortices. In the general case, the equations of motion of such a system will likely
be not integrable. Nevertheless, it would be interesting to obtain a general equation in a
Hamiltonian form and analyze various particular solutions, e.g., stationary configurations
[21, 41]. The most interesting problem is the description of the motion of N rigid bodies on
the sphere with allowances for circulation around each body. A particular case of this problem
is the interaction of several rigid bodies and point vortices. Regrettably, a general formalism
of such a problem has not yet been developed even for the plane. Thus, the hydrodynamics
of several rigid bodies and point vortices still remains a challenging unresolved problem.

• A more systematic study of various particular cases of the dynamics of mass vortices. The
equations of motion of mass vortices on the sphere were presented here; they have already
been partially analyzed for planar cases [9, 22, 41]. This form of equations makes it possible
to consider a number of interesting problems. For example, a very simple application of
these equations to the description of dynamical advection, i.e., the motion of an insoluble,
fine-grained admixture in the fluid flow, is considered in [6]. In our opinion, the equations
obtained in [6] appear to have a more applied character compared to the classical model of
chaotic advection.
In addition, some issues in the dynamics of mass vortices, whose analogs are constantly under
consideration in celestial mechanics, remain unexplored, viz., the existence of stationary and
static configurations, their classification and stability. Note that static configurations of mass
vortices, even with the same intensity, are also possible on the sphere. Various problems
related to the classification of symmetric static configurations and search for nonsymmetric
ones arise in this context. These problems have not yet completely explored even for the
dynamics of regular vortices. Results concerning the static and stationary configurations of
classical vortices are systematically discussed in the survey [13].

• Investigation of vortical motions on surfaces of other types. In view of possible applications, of
considerable interest is the investigation of vortical dynamics not only on the sphere but also
on other compact surfaces that model, in one approximation or another, the Earth’s surface.
From a general theoretical standpoint, it would be interesting to consider the dynamics of
rigid bodies and vortices on a Lobachevsky plane; this problem is simpler than that of motion
on compact surfaces, since it does not involve difficulties due to the ambiguity of the definition
of the point vortex.
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