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A model has been presented for the physical decay with the relaxation of the diffusion flux described by the
hyperbolic diffusion equation. The analysis of such a hyperbolic model provides the predictions for the critical
parameters of the decay, which are compared with the conclusions of the Cahn-ffilliard theory. It has been
shown that the hyperbolic model predicts the nonlinearity of the dispersion curve for the spinodal decay, which
is controlled by the ratio of the diffusion and correlation lengths. The predicted behavior of the dispersion curve
is compared with the experimental data on phase separation in binary glasses.
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A phase transition in which both phases have an
equivalent symmetry and differ only in composition is
known as spinodal decomposition. It was observed in
many experiments with polymer mixtures [1], liquid
solutions [2, 3], and metal systems [4]. Spinodal
decomposition was described by Calm and Hilliard [5,
6] and was theoretically examined and experimentally
tested in [7, 8]. In particular, Andreev et al. [9, 10]
showed that the experimental data obtained from the
data on the scattering of light and x rays on layered
glasses indicate a nonlinear dispersion relation in con-
tradiction with the prediction of the Cahn-Hilliard the-
ory [5,6]. According to this theory, the linear change in
the dispersion relation at early stages of the spinodal
decomposition is characteristic of only the systems
with long-range interaction [8]. This is not the case for
the systems with short-range interaction, because non-
linear or nonequilibrium effects are important at rapid
hardening or deep supercooling [11, 12].

In order to describe the strongly nonequilibrium
phase separation, Binder et al. [13] generalized the
Cahn-Hilliard theory by introducing a slowly relaxing
variable. Their calculations show that the instability of
the system is determined by the relaxation of the slowly
relaxing structural variable rather than by the standard
diffusion mechanism. The Cahn-Hilliard theory was
recently modified with the inclusion of the relaxation of
the diffusion flux to its steady state [14,15]. The flux is
considered as an independent thermodynamic variable
in agreement with the formalism of extended irrevers-
ible thermodynamics [16]. As a result, a hyperbolic par-
tial differential equation, which is called the hyperbolic
model for spinodal decomposition, was obtained for
phase separation with diffusion. This model can

describe spinodal decomposition in short time inter-
vals, at high characteristic rates of the process, for large
density gradients, or for deep supercooling at early
decomposition stages. For this reason, we present a
comparative analysis of the Cahn-Hilliard parabolic
model and hyperbolic model (modified Cahn-Hilliard
model) of spinodal decomposition. In order to test the
hyperbolic model, its predictions are compared with the
experimental data.

Let us consider an isothermal and isobaric binary
system which is an isotropic solid solution of atoms of
the kinds A and B. Let the solution be free of imperfec-
tions and its molar volume be independent of the den-
sity of atoms. The spinodal region is determined by the
negative curvature of the free energy, d2fld<? < 0, and
the spinodal is specified by the relation d2fldc2 = 0,
where / is the Helmholtz free energy per unit volume
and с is the density of atoms B.

The free energy at a given temperature Г depends on
the behavior of the slow persistent variable, such as the
density c, and fast nonpersistent variable, such as the
diffusion flux J, according to the model of rapid phase
transitions [15]. In this case, the free energy density/
can be written as

/(c,Vc,J) = (1)

Here, ê  =(32/73(Vc)2)vc=о is proportional to the corre-
lation length squared; the coefficient oty =
[Тц/1)][Э(Д}х)/Эс]г=(.опа determines non-Fick diffusion;
A\i = \xA - \iB is the difference between the chemical
potentials of A and В atoms, respectively; and TD is the
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time of the relaxation of the diffusion flux to its steady
state.

The free energy density given by Eq. (1) is defined
for the locally nonequilibrium state. This state is micro-
scopically characterized by the impossibility of the sys-
tem to pass through all the points of the phase space in
a short time interval in a local volume. This situation
leads to the necessity of the inclusion of the relaxation
of the flux J in the steady value at the phenomenologi-
cal description level [17]. In the instantaneous relax-
ation limit, xD — • 0, the contribution from the flux J
disappears and Eq. (1) determines the free energy den-
sity/(c, Vc) for the locally equilibrium system "[5, 6].

In view of Eq. (1), the total free energy can be writ-
ten in the functional form

F(c, Vc, J) = + | jJ2] dv, (2)

where v is the volume of the system. The evolution of
F(t\ VC, J) in time t is described as dFldt = (dFldt)ex +
(dFldt)m, where (dF/dt)cx + (dF/dt)in are the changes in
the free energy due to the exchange with the external
medium and inside the system defined as the dissipative
function. The application of the standard procedure
described in [14, 15] to Eq. (2) yields

dF\
dt)m

, (3)

(4)

where Q is the outer surface of the volume v, /„ is the
diffusion flux directed along the normal vector n, and
/I- = Э/̂ УЭс. According to Eq. (4), the diffusion flux
includes the term a.jdj/dt whose physical meaning is as
follows: the diffusion flux far from equilibrium ensures
additional ordering that leads to an increase in dissipa-
tion.

Near the stable state, diffusion flux (4) must
decrease in time so that the free energy of the entire sys-
tem decreases. This condition in the simplest case
implies a linear relation between the thermodynamic
flux and conjugate force [16]. Then, the flux appearing
in Eq. (4) satisfies the evolution equation

J = - (5)

where M is the mobility of atoms, so that TD = Ma.j.
Equation (5), together with the mass balance equation
дс/dt = -V • J, provides the transport equation

чЩ + ̂ r = V[AfV(/;-e2V2c)], (6)

which coincides with the equation previously derived
from the entropy functional [14, 15]. Equation (6) is a
general hyperbolic partial differential equation involv-
ing the delay of the decay described by the term
TDd2c/dt2.

At the initial decay stages, i.e., when large density
gradients exist and short time intervals are important,
we disregard the terms nonlinear in с in Eq. (6). In this
case,

З э7 '
ОС

= M/CCV c-Me,cV c, (7)

where f^c = Э%/Эс2. In the limit t D — - 0, Eq. (7) is
modified to the Cahn-Hilliard equation [5, 6]. Equa-
tion (7) can be treated as a modified Cahn-Hillard
equation, which is a linearized hyperbolic equation. It
is valid for spinodal decomposition with locally non-
equilibrium diffusion [diffusion with the relaxation of
diffusion flux (5)].

Let us consider the elementary solution of Eq. (7) in
the form of the plane wave

c(z, t)-c(l = akexp[i(kz-u>(k)t)], (8)

where к is the wave vector and the dispersion relation
has the form

--Ч • (9)

The upper and lower signs for co(A') in Eq. (9) corre-
spond to the propagation of waves in the positive and
negative directions of the z axis.

In the locally equilibrium limit, TD — • 0, Eq. (9)
takes the form

~--Ul ±(J - (10)

One of the roots given by Eq. (10) tends to -°° along the
imaginary axis as co(fc) ~ ;7xD. This gives rise to the
exponential damping of solution (8). The second of the
roots given by Eq. (10) is finite and coincides with the
known solution [5, 6]

to(i) =-iAft"(/"c + e~k~). (11)

The critical WL Xc above which the irreversible
increase in small density perturbations occurs can be
obtained from Eqs. (9) and (11) in the form

к =
For /gC < 0 and A, > \,, the free energy decreases and
spinodal decomposition occurs. Relation (12) shows that,
if the composition is close to the spinodal one, f"c = 0,
the critical WL increases infinitely, \ —•• °° [6].
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Fig. 1. Dimensionless function O)*(q^)/q^ for (dotted line)
the parabolic diffusion equation (Cahn-Hilliard equation)
and hyperbolic equation of spinodal decomposition for the

parameter x* = ^(-Г^У^К-Д,.)] = t^ll2

c= (solid

line) 10 and (dash-dotted line) 2, which determines the ratio
of the diffusion length /D and correlation length lc.

The imaginary part of frequency (9) for к < kc is
given by the expression

o)± = (2T D )- 1 [- l±( l-4Jk 2 x D (/ ; ' e + ec* 2)) l / 2], (13)

where the plus and minus signs correspond to the
increase and decrease of solution (8). The expansion of
the square root in Eq. (13) in the small parameter

4Jk2rD[/cc + e ^ 2 ] < 1 provides (o+ = -k2M(f"c + г2

ск
2)

in the local equilibrium limit rD — • 0. This expression
coincides with the kinetic rate of increasing instability
that was obtained by Cahn [6] for the purely diffusion
regime. For this reason, expression (13) can be treated
as the kinetic instability index for both the dissipative
and ballistic regimes of the atomic transport described
by Eq. (7). The extremum (maximum frequency)

com(fcm) = i ( 2 T D r ' [ - 1 + (1 + T D ( / ; ' C E C ) 2 ) ' / 2 ] (14)

of expression (13) occurs at

km = 2nlXm = (-/;'c/(2e2))"2, / « < 0 . (15)

According to Eq. (15), the WL Xm for the maximum

instability index is Jl times larger than the critical
wavelength A,c determined by Eq. (12) for density per-
turbation increase.

In the Cahn-Hilliard theory, the instability index in
spinodal decomposition is determined by Eq. (11). The
normalization of this expression to the imaginary part

G>m(fcm)= ' ^ /"с /2ec)
2, which is obtained from Eq. (14)

in the limit XD — - 0, provides the relations

2 = [(u(k)/(u(kJVq2 = 4(\-q2), (16)

where q = k/kc and kc is given by Eq. (12).

The instability index in the hyperbolic model, co+, is
given by Eq. (13). Therefore, in view of Eqs. (12) and
(14),

m*(q)/q2 = [(H+{k)/(a(km)]/q2

Л1 + q\l -q2)tDM(-f:jEj2]

This expression is transformed to Eq. (16) in the limit
t D — • 0.

Figure 1 shows the quantity a>*(q)/q2 as a function
of q2 given by Eqs. (16) and (17). It is seen that the
Cahn-Hilliard theory predicts a linear dependence (the
dotted line in Fig. 1), which is not observed experimen-
tally [8]. However, the hyperbolic model is sufficiently
flexible for describing the nonlinear behavior (dash-
dotted and solid lines in Fig. 1). Such a nonlinear
behavior is usually observed in the experiments [7-9].
Let us show that this nonlinearity is controlled by the

parameter x* = T D M ( - / " C fit] in Eq. (17).

Assuming that the diffusion coefficient is defined as
D = -Mf"ce, we introduce the diffusion length /D =
(£>rD)1/2 and the equilibrium part of the free energy den-
sity/,, =fac\\ -c2). Therefore, / " c = 2/0(l -4c) | c = a s =
-2fQ, where f0 is the barrier height. In this case, the
parameter x* in Eq. (17) determines the square of the
ratio between the diffusion length /D and correlation

length / c = zjJTfa, so that x* = l2
D /[ec

2/(2/0)]. Thus, an
increase in the correlation length with respect to the dif-
fusion length reduces the parameter x* and the nonlin-
ear behavior of the function q~2(o*(q) is modified to the
Cahn-Hilliard linear regime (see Fig. 1).

The instability index can be compared to the exper-
imental data on phase separation in glasses [9]. To this
end, Eq. (13) is written in the form

(18)
2xD

In addition, the free energy of the binary system can be
written as [18]

f,,(T,c) = / о [ ( Г / Г с - 1 ) ( с - г с ) 2 + В о (с-с с ) 4 ],(19)

where Tc and cc are the critical temperature and density,
respectively; T < Tc; Bo > 0; and the phenomenological
parameters/o and Bo are determined from the experi-
ment [8].

Figure 2 shows саД2 values measured for the binary
glass with PS at various k2 values [9, 10]. The experi-
mental procedure and details of the measurements were
described and discussed in [7,9,10]. These experimen-
tal data were comparatively analyzed in the Cahn-Hil-
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Fig. 2. Quantity (a+/k2 vs. A2 for (solid line) the hyperbolic
model given by Eqs. (18) and (19) and (points) experimen-
tal data [9, 10] on the scattering of visible light obtained for
the spinodal decomposition of BG SiO2-l 2 wt % Na2O at
7=803K.

Hard theory [7] and Langer-Baron-Miller theory [19].
They exhibit the same nonlinear behavior for (л+(к2)1к2

as, e.g., in spinodal decomposition in crystalline binary
systems [20]. Such a behavior is usually observed in
systems with short-range interaction and at the initial
stages of spinodal decomposition [8]. According to
Fig. 2, the experimental data are well reproduced by
Eqs. (18) and (19) of the hyperbolic model with the
parameters D = 2.3 x 10"14 cmVs, T D = 7.2 x КГ1 ' s, ec =

6.2 x 10-8 cm л/j/mol cm 3 , TITC = 0.85, Bo = 0.15,/0 =
1.88 x 104 J/mol cm3, and с - cc = 0.8 at %.

Figure 2 shows good agreement between the theory
and experiment. This result is due to the fact that a new
length scale, diffusion length /D = (DtD)1 / 2, appears in
the theory in addition to the correlation length lc =

ejj-f"c. Owing to this fact, the theory is sufficiently
flexible to predict the nonlinear NE behavior in the
experiments (Fig. 1) and to quantitatively describe the
experimental data (see Fig. 2).

Note that the hyperbolic model predicts the features
of spinodal decomposition in the systems with both the
short- and long-range interactions. The ratio /ц//с

between the diffusion length /D and correlation length /c

determines the transition between different regimes:
spinodal decomposition becomes close to the Cahn-
Hilliard scenario when this ratio decreases (see Fig. 1).
At lc ~ /D, the system can be treated as long-range and
the Cahn-Hilliard scenario occurs. This conclusion is
in agreement with the theoretical [11] and numerical
[12] results. For the short-range interaction, i.e., for
lc < ID, the kinetic of spinodal decomposition differs

from the prediction of the Cahn-Hilliard theory. For
/c < /D, the local-nonequilibrium effects in the diffu-
sion field are important, which is manifested in the pro-
nounced nonlinearity in the instability index (see
Fig. 2). Thus, the ratio of two scales, liJlc, controls the
mechanism of spinodal decomposition in the transition
from the short-range interaction to the long-range inter-
action in the PD process.
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