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Abstract

A model for diffusion and phase separation which takes into account relaxation of the solute diffusion flux is developed. It is shown that the
model predicts non-linearity in the amplification rate of decomposition, which is governed by the ratio between diffusion and correlation lengths.
The predicted amplification rate is tested against experimental data on a binary phase-separated glass.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A phase transformation in which both phases have equiva-
lent symmetry but differ only in composition is well known as
spinodal decomposition. This transformation has been theoret-
ically described by Cahn and Hilliard [1,2].

In parallel with detailed analysis and tests against experi-
mental data [3,4] the theory of Cahn and Hilliard has been
further explored and developed. In particular, the theory has
problems with the description of the early stages of decomposi-
tion. It has been demonstrated that experimental data extracted
from light and X-ray scattering by phase-separated glasses [5,6]
exhibit non-linear behavior in dispersion relation in contradic-
tion with predictions of the Cahn–Hilliard theory. The theory
predicts linear dispersion relation versus square of wave num-
ber that is only true for the long-range interaction [4]. Such
linear dependence might be observed during intermediate or
even latest stages of phase separation. However, due to high
instability at earlier stages of decomposition (or for deeply su-
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percooled systems below spinodal line), short-range interaction
plays important role [7,8]. This leads to the pronounced influ-
ence of non-equilibrium effects and to possible non-linearity in
characteristic functions of spinodal decomposition such as dis-
persion relation.

Few advancements were made for strongly non-equilibrium
phase separation. Binder et al. [9] generalized the linearized
Cahn–Hilliard theory to the case of the existence of a slowly
relaxing variable. Their calculations show that the instability of
the system is not of the standard diffusive type, but rather it is
controlled by the relaxation of the slow structural variable. Re-
cently, Cahn–Hillard theory has been modified by taking into
account the relaxation of diffusion flux to its local steady state
[10,11]. The flux is considered as an independent thermody-
namic variable in consistency with the extended irreversible
thermodynamics [12]. As a result, a partial differential equa-
tion of a hyperbolic type for phase separation with diffusion
has been derived that can be called “a hyperbolic model for
spinodal decomposition”. Theoretically, this model can predict
spinodal decomposition for short periods of time, large charac-
teristic velocities of the process, large concentration gradients,
or deep supercoolings at the earliest stages of decomposition.
Therefore, the present Letter gives a comparative analysis for
both Cahn–Hilliard’s parabolic model and the hyperbolic model
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(modified Cahn–Hilliard) of spinodal decomposition. As a test
for the hyperbolic model we compare its predictions with ex-
perimental data.

2. The model

Consider an isothermal and isobaric binary system repre-
sented as an isotropic solid solution free from imperfections
and with molar volume independent of concentration of A-
and B-atoms. One assumes that a spinodal region is defined by
the negative curvature for the free energy, ∂2f/∂c2 < 0, and
the spinodal itself is defined as ∂2f/∂c2 = 0, where f is the
Helmholtz free energy per unit volume and c is the concentra-
tion of B-atoms.

For a given temperature T , the free energy f is based
on the selected set of independent thermodynamic variables
{c,∇c, �J }, consisting of concentration, its gradient, and solute
diffusion flux, respectively. This set represents a union of the
slow conserved variable c and the fast non-conserved vari-
able �J , much as for models of fast phase transformations [11].
In such a case, the free energy density can be written in the fol-
lowing form

(1)f (c,∇c, �J ) = fh(c) + ε2
c

2
(∇c)2 + αJ

2
J 2,

where εc = [(∂2f/∂(∇c)2)∇c=0]1/2 is the coefficient propor-
tional to correlation length, αJ = [τD/D][∂(�μ)/∂c]T =const
the coefficient specifying non-Fickian diffusion, D is the dif-
fusion constant, �μ = μA − μB the difference of chemical
potentials for components A and B , respectively, and τD is the
relaxation time of the diffusion flux to its steady state.

The free energy density (1) is defined for local non-equilibri-
um state. Microscopically, this state is characterized by impos-
sibility for a system to cover all points of its phase space. This
leads to necessity of introduction of relaxation for the flux �J
to its steady state in phenomenological description. In the limit
of instantaneous relaxation, i.e., τD → 0, the term with fluxes
vanishes and Eq. (1) gives the free energy density f (c,∇c) of
Cahn–Hilliard’s form [1,2] applicable for local equilibrium sys-
tem.

Taking Eq. (1), the total Helmholtz free energy as a free en-
ergy functional is given by

(2)F(c,∇c, �J ) =
∫
v

[
fh(c) + ε2

c

2
(∇c)2 + αJ

2
J 2

]
dv,

where v is a sub-volume of the system. Evolution of F(c,∇c, �J )

with time t is described by dF/dt = (dF/dt)ex + (dF/dt)in,
where (dF/dt)ex is the external exchange of the free energy
and (dF/dt)in is the internal change of the free energy inside
of the system. The latter is defined as a dissipative function.
Using the procedure described in Refs. [10,11] and applied
to Eq. (2) one can obtain (dF/dt)ex = ∫

dω [ε2
c (∇nc)∂c/∂t +

(−f ′
c +ε2

c∇2c)Jn] and (dF/dt)in = ∫
dv �J · [∇(f ′

c −ε2
c∇2

nc)+
αJ ∂ �J/∂t], where ω is the outer surface of sub-volume v,
Jn is the diffusion flux pointed by the normal vector �n, and
f ′

c = ∂fh/∂c. Around a steady state, the dissipative function

(dF/dt)in must decrease in time, so that the free energy of
the entire system is decreasing. It gives the following evolution
equation for the diffusion flux

(3)�J = −M∇(
f ′

c − ε2
c∇2c

) − MαJ

∂ �J
∂t

,

where M is the atomic mobility which has a positive value,
so that τD = MαJ . As we show below, the relaxation term
MαJ ∂ �J/∂t in RHS of this equation has an important role in
description of spinodal decomposition, especially at the very
first stages of its evolution.

Together with the atomic mass balance ∂c/∂t = −∇ · �J ,
Eq. (3) leads to the following governing equation [10,11]:

(4)τD

∂2c

∂t2
+ ∂c

∂t
= ∇ · [M∇(

f ′
c − ε2

c∇2c
)]

.

Eq. (4) is a general partial differential equation of hyper-
bolic type with the decomposition delay described by the term
τD∂2c/∂t2.

Because we focus on the analysis of the initial stages of de-
composition (i.e., when large concentration gradients exist and
short periods of time are important) one may neglect in Eq. (4)
all terms not linear in c. This yields

(5)τD

∂2c

∂t2
+ ∂c

∂t
= Mf ′′

cc∇2c − Mε2
c∇4c,

where f ′′
cc = ∂2fh/∂c2. As τD → 0, Eq. (5) transforms into the

Cahn–Hilliard equation [1,2]. In the present form, Eq. (5) can
be considered as a modified Cahn–Hilliard equation which is
a linearized partial differential equation of a hyperbolic type.
This equation is true for spinodal decomposition with local non-
equilibrium diffusion (diffusion with relaxation of the solute
flux).

3. Analysis of the dispersion relation

Consider the elementary exponential solution of Eq. (5) in
the following form

(6)c(z, t) − c0 = ak exp
[
i
(
kz − ω(k)t

)]
,

where k is the wave-vector and the dispersion relation ω(k) is
given by

(7)ω(k) = − i

2τD

±
(

Mk2(f ′′
cc + ε2

c k
2)

τD

− 1

4τ 2
D

)1/2

.

The upper and lower signs for ω(k) in Eq. (7) correspond to the
branches which are responsible for the wave propagation in the
positive and negative z-directions, respectively.

Within local equilibrium limit τD → 0, Eq. (7) gives the fol-
lowing approximation

(8)ω(k) ≈ − i

2τD

[
1 ± (

1 − 2τDMk2(f ′′
cc + ε2

c k
2))].

Eq. (8) shows that one of the roots is going to −∞ along the
imaginary axis by the law ω(k) ∼ i/τD . This leads to an ex-
ponential decay of the solution (6). The second root of Eq. (8)
is finite and it is equivalent to the well-known Cahn–Hilliard
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relation

(9)ω(k) ≈ −iMk2(f ′′
cc + ε2

c k
2).

Local equilibrium limit for the dispersion relation (7) gives two
different roots: the first root is divergent and the second root
approaches to the relation (9).

From Eqs. (7) and (9) one can obtain a critical wavelength λc

above which infinitesimal sinusoidal fluctuations of concentra-
tion irreversibly grow. This yields

(10)kc = 2π/λc = (−f ′′
cc/ε

2
c

)1/2
, f ′′

cc < 0.

Therefore, with f ′′
cc < 0 and for λ > λc, the free energy de-

creases, and decomposition starts to proceed. Eq. (10) clearly
shows that as the composition tends to the values lying in the
spinodal, f ′′

cc = 0, the critical wavelength approaches to infinity,
λc → ∞ [2].

Using Eq. (7), the imaginary part of the frequency at k < kc

is given by

(11)ω± = (2τD)−1[−1 ± (
1 − 4k2τDM

(
f ′′

cc + ε2
c k

2))1/2]
.

In this expression, the “plus” and “minus” signs correspond to
the growth or decay of solution (6), respectively. After expand-
ing the square root in Eq. (11) for 4k2τDM[f ′′

cc + ε2
c k

2] 
 1
one gets in the local equilibrium limit the imaginary part of
Eq. (9). This expression is the kinetic amplification rate ob-
tained by Cahn [2] for a pure diffusion regime. Eq. (11) can
be interpreted as the kinetic amplification rate for both dissi-
pative and propagative regimes of atomic transport described
by Eq. (5). The extremum of Eq. (11) gives the maximum fre-
quency of the form

(12)ωm(km) = i(2τD)−1[−1 + (
1 + τDM

(
f ′′

cc/εc

)2)1/2]
at

(13)km = 2π/λm = (−f ′′
cc/

(
2ε2

c

))1/2
, f ′′

cc < 0.

Consequently, the maximum wavelength (13) is exactly
√

2
times larger than the critical wavelength (10) of instability
against fluctuations of concentration.

Within the hyperbolic model, the amplification rate for de-
composition ω+ is given by Eq. (11). Therefore, using Eqs. (10)
and (12), one can get the following relation

ω∗(q)/q2

= [
ω+(k)/ω(km)

]
/q2

(14)= 1

q2

[1 + q2(1 − q2)τDM(−f ′′
cc/εc)

2]1/2 − 1

[1 + τDM(−f ′′
cc/εc)2]1/2 − 1

.

With τD → 0, it transforms into the prediction of Cahn–Hilliard
theory:

(15)ω∗(q)/q2 = [
ω+(k)/ω(km)

]
/q2 = 4

(
1 − q2).

Eqs. (14) and (15) give expression for ω∗ = ω+/ωm, i.e., they
are normalized on the imaginary part of expression ωm(km) =
iM[f ′′

cc/(2εc)]2 (that is found from Eq. (12) in the limit
τD → 0). Also, it is assumed that q = k/kc, where kc is given
by Eq. (10).

Fig. 1. Comparison of the function ω∗/q2 for the parabolic diffusion equation
(Cahn–Hilliard equation) and the hyperbolic equation (modified Cahn–Hilliard
equation). Curves for the hyperbolic equation are given for various values of
the parameter τ∗ = τDM(−f ′′

cc)/[ε2
c /(−f ′′

cc)].

4. Discussion

Fig. 1 shows the relationship “ω∗(q)/q2 versus q2” given
by Eqs. (14) and (15). As it can be seen, Cahn–Hilliard’s theory
predicts the linear law (dotted line in Fig. 1) that is practically
not observable [4]. The present model is flexible enough to
describe non-linear behavior (dashed-dotted and solid lines in
Fig. 1). Such non-linear behavior is typically observed in exper-
iments [3,5]. In what follows, we show that this non-linearity
can be controlled by the parameter τ ∗ = τDM(−f ′′

cc)
2/ε2

c in
Eq. (14).

Now, assume that the diffusion constant is given by D =
−Mf ′′

cc, the diffusion length is defined by lD = (DτD)1/2, and
the equilibrium part of the free energy density is described
by the double-well fh = f0c

2(1 − c2). From this it follows
f ′′

cc = 2f0(1 − 4c)|c=0.5 = −2f0, where f0 is the characteris-
tic height of the free energy. Then, the parameter τ ∗ in Eq. (14)
specifies the ratio between diffusion length lD and correlation
length lc = εc/

√
2f0, i.e., τ ∗ = (lD/lc)

2. Thus, with the in-
creasing of the correlation length (relatively to the length of
diffusion), parameter τ ∗ decreases and the non-linear behavior
of the function q−2ω∗(q) tends to the linear law predicted by
Cahn and Hilliard, Fig. 1.

The function of the amplification rate (11) predicted by
the hyperbolic model can be compared with experimental
data of Andreev et al. on phase-separated glasses [5]. With
this aim, the amplification rate is taken in the following
form

(16)ω+ = [1 + 4DτDk2(1 − ε2
c k

2/f ′′
cc)]1/2 − 1

2τD

.

Also, we assume that the free energy of a binary system can be
replaced by

(17)fh(T , c) = f0
[
(T /Tc − 1)(c − cc)

2 + B0(c − cc)
4],
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Fig. 2. Dependence ω+/k2 upon k2 given by the hyperbolic model [solid line,
Eqs. (16) and (17)] and scattering data of visible light [points, Refs. [5,6]].
Experimental points were obtained on phase-separated SiO2–12 wt% Na2O
glass at T = 803 K.

where Tc and cc are the critical temperature and concentra-
tion, respectively, T < Tc, and B0 > 0. Eq. (17) is often used
in analysis of kinetics of spinodal decomposition in glasses
[14] and the parameters f0 and B0 are treated as phenom-
enological input parameters of the theory, which are fitted to
experiment [4].

Fig. 2 shows data for the relationship “ω+/k2 versus k2”
extracted from experiments on a binary phase-separated
glass [5,6]. They exhibit non-linear behavior as predicted by
Eqs. (16) and (17) for the following material parameters:
D = 2.3 × 10−14 cm2/s, τD = 7.2 × 10−11 s, εc = 6.2 ×
10−8 cm

√
J/(mole cm3), T/Tc = 0.85, B0 = 0.15, f0 =

1.88 × 104 J/(mole cm3), and c − cc = 0.8 mole fraction.
In Fig. 2 it is shown that good agreement is achieved between

theory and experiment. This result is due to the fact that both
lengths: correlation length lc = εc/

√
2f0 and diffusion length

lD = (DτD)1/2 appear in the theory. It makes the theory flexi-
ble enough to predict non-linear behavior for amplification rate
typically observed in experiments, Fig. 1, and to quantitatively
describe experiments, Fig. 2.

The hyperbolic model predicts a transition from spinodal
decomposition with the short-range interaction to decomposi-
tion with long-range interaction. The ratio lD/lc dictates the
transition: spinodal decomposition tends to the Cahn–Hilliard’s
scenario with the increase of the correlation length in compar-
ison with the diffusion length (see Fig. 1). With lc ≈ lD , one
can accept the long range interaction within the system and
the Cahn–Hilliard scenario takes effect. This conclusion sup-
ports results developed theoretically [7] and numerically [8].
With short-range interaction, i.e., with lc < lD , the kinetics
of spinodal decomposition deviates from the predictions of
the Cahn–Hilliard theory. With lc 
 lD , effects of local non-
equilibrium in the diffusion field becomes much more pro-
nounced and a clear-cut non-linearity in amplification rate is
fixed (see Fig. 2). Thus, the interplay between two lengths,
i.e., the ratio lD/lc, governs the transition from short-range

interaction to long-range interaction during phase decomposi-
tion.

5. Conclusions

A non-equilibrium binary system with diffusion and phase
separation has been considered. Taking into account relaxation
of the solute diffusion flux, a principal parameter, as the ratio
lD/lc, is appeared in the theory of phase separation. As soon as
the range of local non-equilibrium effects covers the character-
istic spatial scale for correlation between particles, i.e., lD � lc,
clear non-linearity appears in the dispersion relation in compar-
ison with the prediction of the model of Cahn and Hilliard (see
Fig. 1). Interplay between diffusion length lD and correlation
length lc governs the transition from short-range interaction to
long range interaction. It makes the model predictions flexible
enough to describe experimental data (see Fig. 2).

The model is able to predict earliest stages of decomposition
(lD � lc), intermediate regimes (lD ≈ lc), and latest states of
decomposition when the role of local non-equilibrium effects
disappears (lD 
 lc). It is manifested through gradual degener-
ation of the second derivative from concentration with respect
to time with the factor of short time τD in Eq. (5). On the
large time scale this term is negligible, and the characteristic
diffusion length vanishes, i.e., lD = (DτD)1/2 → 0. In the lat-
ter case, the outcomes of hyperbolic model of decomposition
transforms into the solutions of the Cahn–Hillard theory based
on parabolic diffusion equation.

The present model tests effect of local non-equilibrium on
amplification rate in spinodal decomposition. As a perspective,
several generalizations of the present model can be outlined.
First, introduction into the model fluctuations in a manner of
Cahn–Hilliard–Cook model [15] can be made. As an extension
of the present linearized equation (5), fluctuations can be intro-
duced using analysis of generalized diffusion equation as de-
scribed in Ref. [13]. It might give partial contribution from local
non-equilibrium effects and partial contribution of fluctuations
into non-linearity of the main characteristics (such as amplifi-
cation rate, structural factor, etc.) of spinodal decomposition.
Second, solutions of the non-linear equation (4) has to be tested
with regard to the influence of non-linear effects during initial
stages of decomposition. It might be treated, e.g., in a man-
ner of the “decoupling approximation” of Langer et al. [16] or
using “power’s expansion” suggested by Grant et al. [17]. Com-
parison of the outcomes from non-linear hyperbolic model and
from the well-known non-linear theories based on the parabolic
diffusion equation [15–17] can be seen as a very attractive point
of investigation.
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