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DISCONJUGACY OF A SECOND ORDER LINEAR DIFFERENTIAL

EQUATION AND PERIODIC SOLUTIONS

V. YA. DERR

Abstract. The present paper is devoted to a new criterion for disconjugacy of a second order

linear differential equation. Unlike most of the classical sufficient conditions for disconjugacy,

our criterion does not involve assumptions on the smallness of the coefficients of the equation.

We compare our criterion with several known criteria for disconjugacy, for which we provide

detailed proofs, and discuss the applications of the property of disconjugacy to the problem

of factorization of linear ordinary differential operators, and to the proof of the generalized

Rolle’s theorem.

1. Introduction

A linear differential equation

(1) (Lx)(t) := x′′ + p(t)x′ + q(t)x = 0, I := (a, b) ⊂ R,

having locally integrable coefficients p, q : I 7→ R, is called disconjugate on an interval J ⊂ I

(open or closed) if any of its solutions x 6≡ 0 can not have two zeros in J . The property

of disconjugacy became a subject of intense study in early 1950s (see, e.g., [1] — [13]), in

particular, due to the exceptional role that it plays in the qualitative theory of second order

linear differential equations. Traditionally (see, e.g., the literature cited above), most of the

sufficient conditions for disconjugacy, formulated for differential equation (1) written in the

form x′′ + Q(t)x = 0 (or (P (t)x′)′ + Q(t)x = 0), include some kind of ‘smallness’ assumption

on the coefficient Q. In the present paper (which also may serve as a brief introduction to the

theory of disconjugacy for second order linear differential equations) we obtain a new sufficient

condition for disconjugacy for a differential equation of the general form (1), that does not

involve any assumptions on the smallness of the coefficients.

The paper is organized as follows. In Sections 2-4 we formulate and prove several known

criteria for disconjugacy, and discuss the applications of the property of disconjugacy to the

problem of factorization of linear ordinary differential operators, and to the proof of the gener-

alized Rolle’s theorem. Section 5 is devoted to our new criterion for disconjugacy.

2. Prelimiaries

2.1. Cauchy’s and Green’s functions.

Definition 1. A function C : I × [α, t] → R is called Cauchy’s function of equation (1) if

(LC)(·, s) = 0 for almost all t > s, C(s, s) = 0,
∂C(s, s)

∂t
= 1 (s ∈ I).
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We note that Cauchy’s function always exists and is unique.

Definition 2. A function G : [a, b]2 → R is called Green’s function of boundary value problem

(2) (Lx)(t) = f(t) (t ∈ I), x(a) = 0, x(b) = 0 (a, b ∈ I),

provided that it satisfies the following conditions: 1) G is continuous on [a, b]2;

2) ∂G(·,s)
∂t

is absolutely continuous in the triangles a 6 s < t 6 b and a 6 t < s 6 b, and

∂G(s+, s)

∂t
−

∂G(s−, s)

∂t
= 1;

3)(LG)(·, s) = 0 t 6= s;

4) G(a, s) = 0, G(b, s) = 0.

If the boundary value problem (2) has the unique solution x, then it has the unique Green’s

function, and x admits presentation

x(t) =

∫ b

a

G(t, s)f(s) ds.

Also, one has the following identity

G(t, s) =




−C(b,t)C(s,a)

C(b,a) , a 6 s < t,

−C(t,a)C(b,s)
C(b,a) , t 6 s 6 b,

which implies that if C(t, s) > 0, for a 6 s < t 6 b, then G(t, s) < 0 for (t, s) ∈ (a, b)2.

2.2. Disconjugacy and Sturm theorems. We will need the following results due to Sturm:

Separation of zeros theorem and Comparison theorem (see, e.g., [14, p. 252], [15, p. 81]).

Theorem 1 (Separation of zeros). Let a, b ∈ I, suppose that x is a solution of equation (1)

such that x(a) = x(b) = 0, x(t) 6= 0 for any t ∈ (a, b). Then any other solution of (1), linearly

independent with x, has only one zero in (a, b).

Proof. Suppose that y is a solution of equation (1) linearly independent with x and such that

y(t) 6= 0 on (a, b). Since y(a) 6= 0, y(b) 6= 0 (due to linear independence of x and y), y(t) 6= 0 on

[a, b]. Define h(t) := −W (t)/y(t), where Wronskian W of {x, y} is continuous and nowhere zero

on [a, b]. Then h(t) 6= 0 on [a, b]. Without loss of generality h(t) > 0 on [a, b]. Since h = (x/y)′,

we have
∫ b

a
h(t) dt > 0 and, at the same time,

∫ b

a

h(t) dt =
x(b)

y(b)
−

x(a)

y(a)
= 0.

The latter implies that y(t∗) = 0 at some t∗ ∈ (a, b). If y(t∗) = 0 at some t∗ 6= t∗, then, as we

have already proved, x would have a zero in (a, b), which contradicts to our assumptions. �

Let a ∈ I, x be a solution of equation (1) such that x(a) = 0. A point ρ+(a) > a
(
ρ−(a) < a

)

is called right (left) conjugate point of a if

x(ρ±(a)) = 0, x(t) 6= 0 in (a, ρ+(a))
(
in (ρ−(a), a)

)
.

If x(t) 6= 0 on (a, β)
(
respectively, (α, a)

)
, we define ρ+(a) = β

(
ρ−(a) = α

)
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Corollary 1. Suppose that ρ+(t) 6= β, ρ−(t) 6= α for all t ∈ I. Then functions ρ± are strictly

increasing. Furthermore, ρ+
(
ρ−(t)

)
= ρ−

(
ρ+(t)

)
= t (t ∈ I), i.e., the functions ρ± are the

inverses of each other and map continuously any interval in I to an interval in I.

Proof. Let t2 > t1, x(t1) = y(t2) = 0 (x and y are solutions of (1)). Suppose that ρ+(t2) 6

ρ+(t1). The equality here, meaning that x(ρ+(t2)) = y(ρ+(t1)) = 0, contradicts to the definition

of a conjugate point. Meanwhile, the strict inequality contradicts to Theorem 1 (since y would

have two zeros between two consecutive zeros of x.) Consequently, ρ+(t2) > ρ+(t1).

The proof for function ρ− is similar. The proof of the second statement follows from the

definition of conjugate points and properties of strictly monotone functions. �

Remark 1. Note that if ρ+(a) = β or ρ−(a) = α for a certain a, then functions ρ± might not

be monotone on interval I, but only on (α, b) (or on (a, β)), where

b = inf{t : ρ+(t) = β}
(
a = sup{t : ρ−(t) = α}

)
.

For instance, equation

(3) x′′ −
A sinh t

A cosh t− 1
x′ +

1

A cosh t− 1
x = 0 (A > 2, I = (−∞,+∞))

has a solution

x(t) =
A− cosha

Acosh a− 1
sinh t+

sinh a

Acosha− 1
(cosh t−A)

which satisfies x(a) = 0, x′(a) = 1. Therefore, we obtain

ρ+(t) =

{
ln A−et

1−Aet
if −∞ < t < ln 1

A
,

+∞ if t > ln 1
A
.

Analogously,

ρ−(t) =

{
ln A−et

1−Aet
if ln A < b < +∞,

−∞ if t 6 ln A.

The same situation holds for equation

(4) x′′ −
2(2t− b)

t2 + (t− b)2
x′ +

4

t2 + (t− b)2
x = 0 (b > 0);

here ρ+(t) =

{
b(t−b)
2t−b

if t < 1
2b,

+∞ if t > 1
2 b;

ρ−(t) =

{
b(t−b)
2t−b

if t > 1
2b,

−∞ if 6 1
2b.

Definition 3. We say that a differential equation (1) is disconjugate on an open interval J ⊂ I

if any of its non-trivial solutions has at most one zero in J . If the latter is the case, we say that

J is an interval of disconjugacy of equation (1).

Thus, J is an interval of disconjugacy of equation (1) if and only if ρ±(a) /∈ J for any a ∈ J.

It follows from the above representation of functions ρ± that the intervals for disconjugacy

of equation (3) are
[
a, ln

A− ea

1−Aea

)
, if a < ln

1

A
; [a,+∞), if a > ln

1

A
,

while for equation the intervals for disconjugacy of equation (4) are
[
a,

b(a− b)

2a− b

)
, if a <

1

2
b; [a,+∞), if a >

1

2
b.
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Definition 4. We denote by T(J) the class of linear differential operators L such that the

corresponding homogeneous equation Lx = 0 is disconjugate on interval J ⊂ I.

Let (a, b) ⊂ I, suppose that an → a+, bn → b− (an → −∞, bn → +∞ in the case

a = α = −∞, b = β = +∞). Then

(5) T
(
(a, b)

)
=

∞⋂

n=1

T
([
an, bn

])
=

∞⋂

n=1

T
((
an, bn

))
.

As follows from the definition of the property of disconjugacy and the definition of Cauchy’s

function, if equation (1) is disconjugate on interval J = [a, b) ⊂ I, then C(t, s) > 0 in the

triangle a 6 s < t < b. The disconjugacy of equation (1) on an interval [a, b] implies the

existence of the unique solution of problem (2), so the Green’s function of this problem satisfies

G(t, s) < 0 on (a, b)2.

Theorem 2 (Comparison theorem). Let

Li y := y′′ + p(t) y′ + qi(t) y = 0, i = 1, 2 q1(t) 6 q2(t) (t ∈ I).

If L2 ∈ T(J), then L1 ∈ T(J).

Proof. Let L2 ∈ T(J). Suppose that L1 /∈ T(J). Then there exist a solution x of equation

L1x = 0, and points a, b ∈ J, a < b, x(a) = x(b) = 0, x(t) > 0 (t ∈ (a, b)). Let us define the

solution y of equation L2y = 0 by initial values y(a) = 0, y′(a) = x′(a) (> 0). Since L2 ∈ T(J),

then y(b) > 0. Let h := y − x. Then 0 = L2y − L1x = L2h − (q1 − q2)x, h(a) = 0, h′(a) = 0.

Also, note that h(b) > 0. Thus, function h is a solution to problem

(L2h)(t) = (q1(t)− q2(t))x(t), h(a) = h′(a) = 0,

i.e.,

h(t) =

∫ t

a

C2(t, s)
(
q1(s)− q2(s)

)
x(s) ds 6 0,

since Cauchy’s functions C2(t, s) of equation L2y = 0 is positive for all a 6 s < t 6 b, x(s) > 0,(
q1(s) − q2(s)

)
6 0 for all a < s 6 t 6 b. The inequality h(b) 6 0 contradicts to the inequality

h(b) > 0 obtained previously, so L1 ∈ T(J). �

2.3. Properties of class T(J).

Theorem 3. Let a, b ∈ I. Then T
(
(a, b)

)
= T

(
(a, b]

)
= T

(
[a, b)

)
.

Proof. It suffices to check inclusion T
(
(a, b)

)
⊂ T

(
[a, b)

)
, the rest follows by symmetry.

Let L ∈ T
(
(a, b)

)
. Suppose that L /∈ T

(
[a, b)

)
. Then there exist a solution v of equation (1)

such that v(a) = v(c) = 0 (a < c < b), v(t) > 0 in (a, c) (note that v has at least two zeros in

[a, b), and at most one zero in (a, b)). By definition, c = ρ+(a)
(
(a = ρ−(c)

)
. Let us choose

c1 ∈ (c, b) so that v(t) < 0 in (c, c1). We put a1 = ρ−(c1). According to Corollary 1 a < a1 < c.

Let x be the corresponding solution of equation (1), i.e., x(c1) = x(a1) = 0, x(t) > 0 in

(a1, c1). Since L ∈ T
(
[a1, c1]

)
, there exists the unique solution y of equation (1) that satisfies

y(a1) = y(c1) = 1. We have y(t) > 0 on [a1, c1] (as a continuous function taking the same

values at the endpoints of the interval, function y can have only even number of zeros, hence,

due to disconjugacy, none of them). We note that y is linearly independent with v and with x.
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According to Theorem 1 y has exactly one zero in both intervals (a, a1) and (c, c1), that is, y

has two zeros in (a, b). The latter contradicts to disconjugacy of equation (1) on (a, b). �

Theorem 4. 1. If there exists a solution of equation (1) that is nowhere zero on [a, b] ⊂ I(
(a, b) ⊂ I

)
, then L ∈ T

(
[a, b]

) (
L ∈ T

(
(a, b)

))
.

2. If L ∈ T([a, b], [a, b] ⊂ I)
(
L ∈ T([a, b)), [a, b) ⊂ I

)
, then there exists a solution of

equation (1) that is nowhere zero on [a, b]
(
(a, b)

)
.

Proof. 1. The statement follows immediately from Theorem 1.

2. Let J = [a, b], [a, b] ⊂ I. Let us determine solutions y1(t) and y2(t) by initial conditions

y1(a) = 0, y′1(a) = 1 and y2(b) = 0, y′2(b) = −1. Since L ∈ T([a, b]), one has y1(t) > 0 if t ∈ (a, b],

and y2(t) > 0 if t ∈ [a, b). The solution y1(t) + y2(t) is the one required. If L ∈ T([a, b)), then

the required solution is y1. �

It is possible that there are no solutions preserving sign on [a, b). For instance, consider

L :=
d2

dt2
+ 1 ∈ T([0, π)).

Then any solution of equation Lx = 0 has precisely one zero in [0, π).

3. Applications of disconjugacy

Below we prove two theorems which demonstrate the role of the property of disconjugacy in

the theory of differential equation (1). These are the Factorization theorem (on representation

of a linear ordinary differential operator L as the product of linear differential operators of the

first order, see, e.g., [1],[3]) and the generalized Rolle’s Theorem (see, e.g., [16, p. 63]).

Theorem 5 (Factorization theorem). Suppose J = [a, b] ⊂ I or J = (a, b) ⊂ I. One has

L ∈ T(J), if and only if there exist functions hi, i = 0, 1, 2 such that h′
0, h1 are absolutely

continuous, h2 is summable on J, hi(t) > 0, h0(t)h1(t)h2(t) ≡ 1 on J , and

(6) (Lx)(t) = h2(t)
d

dt
h1(t)

d

dt
h0(t)x(t) (t ∈ J, x′ is absolutely continuous on J).

Proof. Necessity. Let L ∈ T(J). According to Theorem 4 there exists a solution y of equation

(1) such that y(t) > 0 on J. Let u be a solution of equation (1) linearly independent with y and

such that w(t) := [y, u](t) > 0. Let us consider the following linear differential operator of the

second order

L̂x :=
w

y

dt

dt

y2

w

dt

dt

x

y
.

Since functions y, u form a fundamental system of solutions of both equation (1) and equation

L̂x = 0, the top coefficient in L̂ is equal to w
y

y2

w
1
y
≡ 1, then Lx ≡ L̂x. These conditions are

satisfied if h0 = 1
y
, h1 = y2

w
, h2 = w

y
.

Sufficiency. Suppose that we have identity (6). Then function y(t) := 1
h0(t)

> 0 (t ∈ J) is a

solution of equation (1) satisfying the conditions of Theorem 4. This implies that L ∈ T(J). �

Theorem 6 (Generalized Rolle’s theorem). Let J = [a, b] ⊂ I or J = (a, b) ⊂ I, L ∈ T(J).

Suppose that function u has absolutely continuous on J first derivative, and function Lu is

continuous. If there exist m (m > 2) geometrically distinct zeros of u in J , then Lu has at least

m− 2 geometrically distinct zeros in J .
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Proof. According to Theorem 5 one has representation (6). Function h0u has m geometrically

distinct zeros in J . By Rolle’s theorem both functions d
dt
h0u and h1

d
dt
h0u have at least m− 1

geometrically distinct zeros in J . Again, by Rolle’s theorem function Lu has at least m − 2

geometrically distinct zeros in J . The proof is complete. �

4. Criteria for disconjugacy

4.1. Basic criteria. Below we formulate some known criteria for disconjugacy based on The-

orems 2 and 4.

Criterion 1. Let I = (−∞, +∞), p(t) ≡ p = const, q(t) ≡ q = const. Then differential

equation (1) having constant coefficients p(t) ≡ p, q(t) ≡ q is disconjugate on I if and only if

the roots of its characteristic equation λ2 + pλ+ q = 0 are real.

Proof. Let ν be a real root of the characteristic equation. Then function x(t) := eνt is a solution

of equation (1) nowhere vanishing on I. According to the first statement of Theorem 4, equation

(1) is disconjugate on I.

Conversely, let (1) be disconjugate on I. Suppose that the characteristic equation has roots

γ ± δi, δ 6= 0. Then solution x(t) = eγt cos δt of equation (1) has infinitely many zeros in I,

which contradicts to its disconjugacy on I. �

Let us consider equation

(7) x′′ +
p

t
x′ + q(t)x = 0

(
t ∈ I := (0,+∞)

)
, where p = const.

Criterion 2. If q(t) 6 (p−1)2

4t2 , then equation (7) is disconjugate on I := (0,+∞).

Proof. Euler equation x′′ + p
t
x′ + (p−1)2

4t2 x = 0 is disconjugate on I by Theorem 4 since it has

solution x(t) = t
1−p

2 , which is nowhere equal to zero on I (let us also take into account (5)).

According to Theorem 2 equation (7) is also disconjugate on this interval. �

The next sufficient condition of disconjugacy is due to A.M. Lyapunov [12].

Criterion 3. Let p(t) ≡ 0, q(t) > 0 and
∫ b

a
q(t)dt 6 4

b−a
. Then L ∈ T([a, b]).

Proof. Suppose that equation (1) possesses a non-trivial solution y(t) having two zeros in [a, b].

Since y can not have multiple roots, we may assume, without loss of generality, that

(8) y(a) = y(b) = 0.

Function y, as a solution of boundary value problem (1), (8), satisfies the following integral

equation

(9) y(t) = −

∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) =





−
(b− t)(s− a)

b− a
, if a 6 s < t,

−
(t− a)(b − s)

b− a
, if t 6 s 6 b
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is Green’s function of equation y′′ = 0 with boundary conditions (8). It is immediate that for

t 6= s

(10) |G(t, s)| <
(b− s)(s− a)

b− a
.

Let max
s∈[a,b]

|y(s)| = |y(t∗)|. Then (9) and (10)

|y(t∗)| =

∣∣∣∣∣

∫ b

a

G(t∗, s)q(s)y(s)ds

∣∣∣∣∣ 6
∫ b

a

|G(t∗, s)| |y(s)|q(s)ds <

|y(t∗)|

∣∣∣∣∣

∫ b

a

(b− s)(s− a)q(s)

b− a
ds

∣∣∣∣∣ 6
b− a

4

∫ b

a

q(s)ds

since (b − s)(s − a)6
(b − a)2

4
for s∈ [a, b]. Therefore, 1<

b− a

4

∫ b

a

q(s)ds, which contradicts to

the conditions of the theorem. �

Corollary 2. If p(t) ≡ 0, and
∫ b

a
q+(t) dt 6

4
b−a

, then L ∈ T([a, b]).

Here q+(t) := q(t) if q(t) > 0, q+(t) := 0 if q(t) 6 0.

Proof. As we have already proved, L+ := d2

dt2
+ q+ ∈ T([a, b]). At the same time, since q(t) 6

q+(t), one has L ∈ T([a, b]). �

Remark 2. We note that the constant 4 is the formulation of Criterion 3 is sharp.

The latter follows from the next example. Suppose that function v is twice continuously

differentiable on [0, 1] and

v(t) = t (0 6 t 6
1

2
− δ), v(t) = 1− t if t >

1

2
+ δ,

v(t) > 0, v′′(t) < 0 if
1

2
− δ < t <

1

2
+δ.

Define

q(t) =




− v′′(t)

v(t) , if t ∈ (0, 1),

0, if t = 0, t = 1.

Clearly, q is continuous, q(t)>0 on [0, 1]; L := d2

dt2
+ q(t) /∈ T([0, 1]), since equation Ly = 0 has

solution y = v(t) which has two zeros in [0, 1]. However,

v′′

v
=

(
v′

v

)′

+

(
v′

v

)2

>

(
v′

v

)′

,

so the value of integral

∫ 1

0

q(t)dt = −

∫ 1

2
+δ

1

2
−δ

(
v′

v

)′

dt = −
v′

v

∣∣∣∣
1

2
+δ

1

2
−δ

=
4

1− 2δ

can be made arbitrarily close to 4 by choosing sufficiently small δ.
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4.2. Semi-effective criteria. Criterion 4 is an example of a non-effective criterion of discon-

jugacy, i.e., a criterion formulated in terms of solutions of equation (1) rather than in terms of

the coefficients of this equation.

Let us now formulate a necessary and sufficient condition of disconjugacy of equation (1)

belonging to Valle-Poussin [2]; this criterion may be called semi-effective [10], i.e., it is effective

as a necessary condition, but non-effective as a sufficient condition. Although this criterion is

not expressed in terms of the coefficients of equation (1), it can be used to obtain sufficient

conditions of disconjugacy formulated in terms of the coefficients.

Theorem 7. Let [a, b] ⊂ I. One has L ∈ T([a, b]) if and only if there exists function v having

first derivative absolutely continuous on [a, b] and such that

(11) v(t) > 0 (a < t 6 b), Lv 6 0 a.e. on [a, b].

Proof. Necessity follows from Theorem 4. Let us show that the conditions of the theorem are

sufficient. In the case v(a) = 0 let us put ṽ(t) = v(t) + εu(t), where ε > 0, and u(t) is the

solution of equation (1) with initial conditions u(a) = 1, u′(a) = 0. For ε sufficiently small we

have ṽ(t) > 0 on [a, b]. Hence we may assume, without loss of generality, that v(t) > 0 on [a, b].

Let us consider equation

(12) Mx := x′′ + px′ −
v′′ + pv′

v
x = 0.

According to Theorem 4 M ∈ T([a, b]) (since equation (12) has solution v positive on [a, b]).

By our assumptions v′′(t) + p(t)v′(t) + q(t)v(t) 6 0, i.e., − v′′(t)+p(t)v′(t)
v(t) > q(t), a.e. on [a, b].

The statement of the theorem now follows from Theorem 2. �

The proof of the next statement follows the same argument.

Theorem 8. If there exists function v having first derivative absolutely continuous on [a, b)

ans such that

(13) v(t) > 0 (a < t < b), Lv 6 0 a.e. on (a, b),

then L ∈ T([a, b)).

4.3. Effective criteria. By choosing a particular ‘test’ function v, one can obtain an effective

criterion for disconjugacy.

Criterion 4. If q(t) 6 0 on [a, b] ⊂ I
(
or on (a, b) ⊂ I

)
, then L ∈ T([a, b])

(
resp., L ∈ T

(
(a, b)

))
.

Proof. We put v(t) ≡ 1 and then use Theorem 7 (Theorem 8). �

Criterion 5. Suppose that p(t) = O(t− a) if t → a+, p(t) = O(b− t) if t → b− (in particular,

p(t) ≡ 0). If

π

b − a
cot

π(t− a)

b− a
p(t) + q(t) 6

π2

(b− a)2
,

then L ∈ T
(
[a, b)

)
.

Proof. Let us choose v(t) ≡ sin π(t−a)
b−a

and then use Theorems 8 and 3. �
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Criterion 6. Suppose that we have inequality

(14) |p(t)| ·

∣∣∣∣
b+ a

2
− t

∣∣∣∣+ |q(t)| ·
(b− t)(t− a)

2
6 1

or inequality

(15)
b− a

2
essup
t∈(a,b)

|p(t)|+
(b− a)2

8
essup
t∈(a,b)

|q(t)| 6 1.

Then L ∈ T
(
[a, b)

)
.

Proof. Indeed, we take v(t) ≡ (b−t)(t−a)
2 and then refer to Theorems 3 and 8. �

Let us note that inequality (15) implies inequality (14). Let P (t, λ) := λ2 + p(t)λ + q(t) be

the ‘characteristic’ polynomial.

Criterion 7. If there exists ν ∈ R such that P (t, ν) 6 0 (t ∈ (−∞,+∞)), then equation (1)

is disconjugate on (−∞,+∞).

Proof. One has v(t) := eνt > 0 and (Lv)(t) = eνtP (t, ν) 6 0 on (−∞,+∞). The rest follows

from Theorem 7. �

Let us now formulate criteria that can be obtained from Theorem 7 (Theorem 8) using a

‘test’ function depending on coefficients of equation (1).

1o. Let us consider equation

(16) L̃x := x′′ + Px′ +Qx = 0

having constant coefficients P and Q, in assumption that it is disconjugate on [a, b). Let v be

the solution of boundary value problem L̃v = −1, v(a) = v(b) = 0, let C̃(t, s) be Cauchy’s

function of equation (16). Then

C̃(t, s) > 0 (a 6 s < t < b) and v(t) =

∫ b

a

M(t, s) ds > 0 (t ∈ (a, b)),

where

M(t, s) :=





C̃(b, t) · C̃(s, a)

C̃(b, a)
, a 6 s 6 t 6 b,

C̃(t, a) · C̃(b, s)

C̃(b, a)
, a 6 t < s 6 b

> 0, (t, s) ∈ ((a, b)× (a, b)).

Since (Lv)(t) = −1 +
(
p(t)− P

)
v′(t) +

(
q(t)−Q

)
v(t), inequality (Lv)(t) 6 0 is satisfied if

(17)
(
p(t)− P

) ∫ b

a

∂M(t, s)

∂t
ds+

(
q(t)−Q

) ∫ b

a

M(t, s) ds)ds 6 1, t ∈ (a, b).

As a result, we get the following statement.

Criterion 8. If (17), then (1) is disconjugate on [a, b).

The special choice of coefficients P and Q can lead to criteria for disconjugacy that are more

subtle than the ones formulated above.
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2o. Consider the particular case Q = 0. We have

M(t, s) =





(1− e−P (b−t))(1− e−P (s−a))

P (1− e−P (b−a))
(s 6 t),

(1− e−P (t−a))(1− e−P (b−s))

P (1− e−P (b−a))
(s > t).

It is immediate that

v(t) =
(1 − e−P (b−t))(t− a− 1

P
(1− e−P (t−a)))

P (1− e−P (b−a))
+

(1 − e−P (t−a))(b − t− 1
P
(1− e−P (b−t)))

P (1− e−P (b−a))
6

2( b−a
2 − 1

P
(1− e−P b−a

2 ))

P (1 + e−P b−a
2 ))

,

v′(t) =
P
(
(b− t)e−P (t−a) − (t− a)e−P (b−t)

)
+ e−P (b−t) − e−P (t−a)

P
(
1− e−P (b−a)

) ,

|v′(t)| 6
|P (b − a) + e−P (b−a) − 1|

P (1− e−P (b−a))
.

Since condition Lv 6 0 is now equivalent to inequality
(
p(t) − P

)
v′(t) + q(t)v(t) 6 1, we get

the following criterion.

Criterion 9. If

|p(t)−P |
|P (b− a)+e−P (b−a) − 1|

P (1− e−P (b−a))
+|q(t)|

2( b−a
2 − 1

P
(1 − e−P b−a

2 ))

P (1 + e−P b−a
2 ))

61

(a < t < b), then equation (1) is disconjugate on [a, b).

3o. If we take, instead of auxiliary equation (16), equation L̃x := x′′ + p(t)x′ = 0, and take

as v the solution of problem L̃v = −1, v(a) = v(b) = 0, we obtain the following criterion.

Criterion 10. If q(t)
∫ b

a
M(t, s) ds 6 1, t ∈ (a, b), where

M(t, s) =





∫ b

t
e−

∫
σ

t
p(µ) dµdσ ·

∫ s

a
e−

∫
σ

a
p(µ) dµdσ

∫ b

a
e−

∫
σ

a
p(µ) dµdσ

(s 6 t),

∫ t

a
e−

∫
σ

a
p(µ) dµdσ ·

∫ b

s
e−

∫
σ

s
p(µ) dµdσ

∫ b

a
e−

∫
σ

a
p(µ) dµdσ

(t < s),

then equation (1) is disconjugate on [a, b).

5. A new criterion for disconjugacy

1. In what follows, we derive a second order criterion for disconjugacy on the whole real axis

R. Let us consider differential equation

(18) L̃x := x′′ + px′ + qx = 0

having constant coefficients p and q. As was shown before (see Criterion 1), disconjugacy of

equation (18) on R is equivalent to inequality p2 − 4q > 0.

We associate to equation (18) a point L̃ = (p, q) in the (p, q)-plane Π. Let

N := {(p, q) : p2 − 4q > 0}, O := R
2 \N, M±(γ) := {(p, q) : q 6 −γ2 ± γ p}.
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Then according to Criterion 1

L̃ ∈ T
(
(−∞, +∞)

)
⇐⇒ L̃ ∈ N.

Let us now consider differential equation

(19) Lx := x′′ + p(t)x′ + q(t)x = 0

with locally integrable coefficients on (−∞, +∞). Every equation of form (19) gives rise to a

‘curve’ GL = {t : (p(t), q(t))} in plane Π (we use quotation marks since this curve is determined

up to a set of measure zero), more precisely, it determines a motion DGL along this curve.

Now, the inclusion GL ⊂ N is neither necessary nor sufficient for the disconjugacy of equation

(19) on R : for instance, equation x′′ − t
2x

′ + t2

16x = 0, despite the above inclusion, possesses a

solution u(t) ≡ e
t2

8 sin t
2 , which has two zeros on each interval [2kπ, 2(k + 1)π] (k ∈ Z), i.e.,

this equation is not disconjugate. At the same time, equation

x′′ + tx′ +

(
t2

4
+

1

2

)
x = 0

having solution u(t) ≡ e−
t2

4 > 0 (t ∈ R), is disconjugate on R by Theorem 8, however GL ⊂ O.

The same is true for a more general equation

(20) x′′ + p(t)x′ +

(
p2(t)

4
+

1

2
p′(t)

)
x = 0, p′(t) > 0, t ∈ R;

it has a solution x = e
− 1

2

∫ t

0

p(s) ds

> 0, t ∈ R. Another example confirming that GL ⊂ N is

neither necessary nor sufficient for disconjugacy is given by equation

(21) x′′ +
sin t

2 + sin t
x = 0,

which is disconjugate on R by Theorem 8, but GL

⋂
N 6= ∅, GL

⋂
O 6= ∅.

Nevertheless, we have the following result.

Theorem 9. Suppose that one of the following conditions is satisfied:

1) We have p(t) ≡ p = const, GL ⊂ N.

2) GL ⊂ N, GL is a line or line segment.

3) We have GL ⊂ M+(γ) (respectively, GL ⊂ M−(γ)) for a certain γ > 0.

4) The function p is differentiable, p′(t) > 0
(
p′(t) 6 0

)
on R, and GL ⊂ N.

5) The function p is differentiable, p′(t) > 0
(
p′(t) 6 0

)
on R, and

q(t) 6
p2(t)

4
+

1

2
p′(t)

(
q(t) 6

p2(t)

4
−

1

2
p′(t)

)
.

6) Suppose that function r : R → R is continuous, function p is differentiable and one of the

following conditions is satisfied:

(22) p′(t) > 2r(t) (p′(t) 6 −2r(t)) (t ∈ R)

or

(23) p2(t)− 4p′(t) + r(t) 6 0 (p2(t) + 4p′(t) + r(t) 6 0) (t ∈ R)
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and also q(t) 6 p2(t)
4 + r(t) (t ∈ R).

Then equation (19) is disconjugate on R.

Proof. 1) Let us define v(t) := e−
p

2
t > 0. Then (Lv)(t) = e−

p

2
t
(
q(t)− 1

4p
2
)
6 0 (t ∈ R). We

now apply Theorem 8 to complete the proof.

2) The equation of such a line is either q(t) ≡ q = const 6 0 for any p(t), or p = p(t),

q = −γ2 + k p(t), where |k| 6 γ (γ > 0) (if k = ±γ then the line is tangent to the parabola

q = 1
4p

2). In the first case the disconjugacy of equation (19) on R follows from Theorem 2. In the

second case the function v(t) := e−kt > 0 (t ∈ R) satisfies condition (Lv)(t) = e−kt(k2 − γ2) 6

0 (t ∈ R). Theorem 8 now concludes the proof.

3) We put v(t) := e−γ t (accordingly, v(t) := eγ t) and use Theorems 2 and 8.

4) Let p′(t) > 0, L2x := x′′ + p(t)x′ + p2(t)
4 x. We put v(t) := exp

(
− 1

2

∫ t

0

p(s) ds

)
. Then

v(t) > 0, and

(L2v)(t) = −
1

2
p′(t) e

− 1

2

∫ t

0

p(s) ds

6 0, t ∈ R.

It follows that equation L2x = 0 is disconjugate on real line. The disconjugacy of equation (19)

now follows from Theorem 2.

If p′(t) 6 0 then we put y(t) = x(−t) and obtain equation y′′− p(t)y′+ q(t)y = 0 of the form

considered above.

5) Suppose that p′(t)>0. Then equation (20) has solution

v(t)=exp

(
−
1

2

∫ t

0

p(s) ds

)
> 0,

hence it is disconjugate on R. Again, the disconjugacy of equation (19) now follows from

Theorem 2. In the case p′(t)60 we follow the same argument as in the previous paragraph.

6) Suppose that the first inequality (22) is satisfied. Let us consider the differential operator

(24) L2x := x′′ + p(t)x′ +

(
p2(t)

4
+ r(t)

)
x.

We put v(t) := exp

(
− 1

2

∫ t

0

p(s) ds

)
. Then v(t) > 0 and

(L2v)(t) =

(
−
1

2
p′(t) + r(t)

)
e
− 1

2

∫ t

0

p(s) ds

6 0, t ∈ R.

Consequently, L2 ∈ T((−∞, +∞)). The disconjugacy of (19) now follows from Theorem 2.

If the second inequality (22) holds, we put y(t) := x(−t) thus obtaining an equation

y′′ − p(t)y′ + q(t)y = 0,

and a differential operator

L2y := y′′ − p(t)y′ +

(
p2(t)

4
+ r(t)

)
y,

for which we put v(t) := e
1

2

∫
t

0
p(s) ds. The rest of the argument is the same as above.
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Suppose that the first inequality (23) holds. We define v(t) := e−
∫

t

0
p(s) ds (> 0). Then

(L2v)(t) =

(
p2(t)−

1

2
p′(t)− p2(t) +

p2(t)

4
+ r(t)

)
e
−

1

2

∫ t

0

p(s) ds

6 0, t ∈ R.

Therefore, we have L2 ∈ T((−∞, +∞)), so it suffices to apply Theorem 2 to complete the proof.

In the case the second inequality (23) is satisfied, the argument is the same as above. �

We note that inequality (23) is satisfied (in fact, as an identity), e.g., in the case when

r(t) ≡ −R2, p(t) =
R
(
1− c2e

Rt
2

)

1 + c2e
Rt
2

.

Then equation L2x = 0 has solution

x(t) = e
−

∫ t

0

R
(
1− c2e

Rs
2

)

1 + c2e
Rs
2

ds
> 0.

2. Finally, let us consider equation

(25) Lx := x′′ + p(t)x′ + q(t)x = 0 (t ∈ (a,+∞))

with coefficients continuous on (a,+∞). The substitution t → a+ t2 transforms equation (21)

into equation

(26) Lx := x′′ + p(a+ t2)x′ + q(a+ t2)x = 0 (t ∈ (−∞,+∞)).

Now, the disconjugacy of equation (20) on R is equivalent to the disconjugacy of equation (21)

on (a,+∞). Hence, by applying the criteria for disconjugacy for equation (20) derived in the

previous sections, we obtain the respective criteria for disconjugacy of equation (21) on (a,+∞).

3. We now apply Theorem 9 to the problem of existence of periodic solutions of equation

(19) (cf. [17]–[20])

The absence of a non-trivial periodic solution of a linear homogeneous equation of second

order is equivalent to the existence of unique solution to periodic boundary value problem

(Lx)(t) := x′′ + p(t)x′ + q(t)x = f(t),(27)

(p(t+ T ) = p(t), q(t+ T ) = q(t), f(t+ T ) = f(t), T > 0),

x(a) = x(a+ T ), x′(a) = x′(a+ T )(28)

for all a ∈ R and any right-hand side f.

N.N. Yuberev was the first who observed the relationship between the existence of unique

solution to the boundary value problem (27), (28), and the disconjugacy of equation Lx = 0 on

interval [a, a + T ] for any a ∈ R (see [21, 22]). The next theorem can be easily derived from

[21, 22]. We give a new proof of this result.

Theorem 10. Let q(t) 6≡ 0, q(t) > 0
(
q(t) 6 0

)
, t ∈ R,. Suppose that functions p, q

are integrable and T -periodic, and equation Lx = 0 is disconjugate on R. Then the boundary

value problem (27), (28) is uniquely solvable for any right-hand side f or, equivalently, the

homogeneous equation Lx = 0 does not have non-trivial T -periodic solutions.
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We note that the conditions of Theorem 10 are more restrictive than the conditions of

Yuberev-Tonkov-Hohryakov theorem, since the disconjugacy of the second order linear differ-

ential equation on R implies its disconjugacy on any interval [a, a + T ], while the converse is

not true. However, the conditions of Theorem 10 can be verified easily, which justifies these

restrictions.

We note also that the condition of the constant sign for the coefficient q can not be omitted.

For instance, equation (21) having 2π-periodic coefficients is disconjugate on R (the latter

follows from Theorem 8 if we put v(t) ≡ 2 + sin t > 0 (t ∈ R)), however it has a 2π-periodic

solution u(t) ≡ v(t) ≡ 2 + sin t.

Proof of Theorem 10. Let us suppose that equation Lx = 0 has a T -periodic solution u. Since

this solution can not have zeros due to the disconjugacy of the latter equation, we may assume

without loss of generality that u(t) > 0 (t ∈ R). Let {tk}
∞
k=1, 0 < t1 < t2 < . . . be the sequence

of points of global minima of function u, let m := u(tk) > 0. We note that on each interval of

length T there can be only finitely many of such points, as follows from the finiteness of the total

variation of function u being a continuously differentiable function. We define z(t) := u(t)−m.

Then

z(t) > 0 (t ∈ R), z(tk) = 0, k = 1, 2, . . .(29)

(Lz)(t) = (Lu)(t) − mq(t)) = −mq(t) and function z, being a solution of boundary value

problem

(Lz)(t) = −mq(t), t ∈ [t1, tn], u(t1) = 0, u(tn) = 0(30)

has presentation (we assume that n > 1 is sufficiently large, so that between each two points

t1 and tn on distinct period intervals there would exist at least one point tk ∈ (t1, tn))

z(t) = m

tn∫

t1

(
−Gn(t, s)

)
q(s) ds > 0 (< 0) (t ∈ (t1, tn)),

where Gn is the Green function of problem (30). As is well known (see, e.g., [10]) Gn(t, s) < 0

for (t, s) ∈ (t1, tn)
2. The inequality z(t) > 0 (z(t) < 0) for t ∈ (t1, tn) contradicts to (29). This

completes the proof. �

Theorems 9 and 10 now give us the following result.

Corollary 3. Suppose that q(t) 6≡ 0, q(t) > 0
(
q(t) 6 0

)
, t ∈ R, where p, q are locally

integrable T -periodic functions, and equation Lx = 0 satisfies one of conditions 1) – 6) of

Theorem 9. Then the homogeneous equation Lx = 0 does not have non-trivial T -periodic

solutions.
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