
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ГОСУДАРСТВЕННОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «ИНСТИТУТ МАТЕМАТИКИ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК БЕЛАРУСИ»

Международная математическая конференция

«Пятые Богдановские чтения по обыкновенным дифференциальным уравнениям»

Тезисы докладов

7-10 декабря 2010 года

Минск Республика Беларусь УДК 517 ББК 22.161.61я43 М43

Редакторы: С. Г. Красовский, А. А. Леваков, С. А. Мазаник

Международная математическая конференция «Пятые Богдановские М43 чтения по обыкновенным дифференциальным уравнениям»: тез. докладов Международной научной конференции. Минск, 7-10 декабря $2010\,\mathrm{r.-Mh.:}$ Институт математики НАН Беларуси, $2010.-152\,\mathrm{c.}$

ISBN 978-985-6499-65-7

Сборник содержит тезисы докладов, представленных на Международной математической конференции «Пятые Богдановские чтения по обыкновенным дифференциальным уравнениям». В сборник вошли тезисы докладов по вопросам аналитической, качественной и асимптотической теории дифференциальных уравнений, теории устойчивости, теории управления движением, стохастическим дифференциальным уравнениям, методике преподавания математики.

СТАБИЛИЗИРУЕМОСТЬ ДОПУСТИМОГО ПРОЦЕССА НЕЛИНЕЙНОЙ УПРАВЛЯЕМОЙ СИСТЕМЫ

С. Н. Попова (Ижевск, Россия)

Рассмотрим нелинейную управляемую систему

$$\dot{x} = f(t, x, u), \quad (t, x, u) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m.$$
 (1)

Предполагаем, что функция f(t, x, u) непрерывна по переменной t и имеет непрерывные частные производные по переменным x и u на множестве $(t, x, u) \in [t_0, +\infty) \times$ $\times \mathbb{R}^n \times \mathbb{R}^m$.

Допустимым управлением в системе (1) называем произвольную кусочно непрерывную функцию $u:[t_0,+\infty)\to\mathbb{R}^m$. Допустимым решением называем продолжаемое на всю полуось $[t_0, +\infty)$ решение $x(\cdot)$ системы (1), в которой выбрано допустимое управление $u(\cdot)$. Допустимым процессом системы (1) называем пару $(x(\cdot), u(\cdot))$, состоящую из допустимого управления $u(\cdot)$ и соответствующего ему допустимого решения $x(\cdot)$.

Определение. Допустимый процесс $(\widehat{x}(\cdot), \widehat{u}(\cdot))$ системы (1) называется равномерно экспоненциально стабилизируемым, если для каждого $\alpha > 0$ найдутся такие $\delta > 0$ и c>0, что при всяких $t_1\geqslant t_0$ и $x_0\in\mathbb{R}^n$, $\|x_0-\widehat{x}(t_1)\|\leqslant\delta$, существует допустимое управление $u(\cdot)$, удовлетворяющее оценке $||u(t)-\widehat{u}(t)|| \leqslant ce^{-\alpha(t-t_1)}, \ t\geqslant t_1$, и такое, что решение $x(\cdot)$ системы (1) с выбранным $u(\cdot)$ и с начальным условием $x(t_1)=x_0$ определено на всей полуоси $[t_1, +\infty)$ и удовлетворяет оценке $||x(t) - \widehat{x}(t)|| \le ce^{-\alpha(t-t_1)}$, $t \geqslant t_1$.

- **Теорема.** Пусть $(\widehat{x}(\cdot), \widehat{u}(\cdot)) \partial$ опустимый процесс системы (1), такой, что: 1) матрицы $A(t) \doteq \frac{\partial f(t, x, u)}{\partial x} \bigg|_{(\widehat{x}(\cdot), \widehat{u}(\cdot))} u \ B(t) \doteq \frac{\partial f(t, x, u)}{\partial u} \bigg|_{(\widehat{x}(\cdot), \widehat{u}(\cdot))}$ кусочно непрерывны и ограничены на $[t_0, +\infty)$;
- 2) линейная управляемая система $\dot{y} = A(t)y + B(t)v$ равномерно вполне управляeMa;
- 3) имеет место равенство $f(t,\widehat{x}(t)+y,\widehat{u}(t)+v)-f(t,\widehat{x}(t),\widehat{u}(t))=A(t)y+B(t)v++\varphi(t,y,v),$ причем $\|\varphi(t,y,v)\|\leqslant \psi(t)\left\|\begin{pmatrix}y\\v\end{pmatrix}\right\|^m,$ при всех $(t,y,v)\in[t_0,+\infty)\times \mathrm{B}^n_h(0)\times \mathrm{B}^n_h(0)$ $\times B_h^m(0)$, $\epsilon \partial e \lambda[\psi] \leq 0$, m > 1.

 $Torda\ npouecc\ (\widehat{x}(\cdot),\widehat{u}(\cdot))\ pавномерно\ экспоненциально\ cmабилизируем.$

Работа выполнена в рамках программы Президиума РАН «Математическая теория управления».

ОБ ОДНОЙ ЗАДАЧЕ УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНЫХ СИСТЕМ НЕЙТРАЛЬНОГО ТИПА

В. Е. Хартовский (Гродно, Беларусь)

Объект исследования — линейная автономная дифференциальная система нейтрального типа

$$\dot{x}(t) = D\dot{x}(t-h) + Ax(t) + A_1x(t-h) + Bu(t) + B_1u(t-h), \quad t \geqslant 0,$$
(1)