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АВЗТНАОТ

is a goneralieation of the widely uaed King's model for

a apherlcal atel'lar ayatem containing stars of identical

•eases, a two-cooponent model of an equilibrium stellar

ayatea conaiatlng of etare of two different шаваеа is built

proceeding from a proper generalisation of the diatribution

function» In euoh a system, the principle of thermal equilib-

rium,generally epeating, doaa not hold, i.e. equipartition

of Dean kinetic energy between light end heavy stare ia abaent

The radial distribution of partial deneitj and Telocity

dlapereion for each of the components and of the total den-

sity and Telocity diepersion ia obtained. The profiles ot

both the total density and Telocity diaperaion differ consi-

derably from thoaa given by the one-oooponent King's taodel,

•apeoially in the centre of the ayateo. In particular» the

velocity dlaperalon of stare may have there a non-nonolonoua

behaviour. The poeaibilitj to apply the Beny-conponent nodal

for the explanation of the recently deiacovered luainoaity

cup» in the oentral regiona of «one elliptical galaxie* ia.

briefly diaoueaed.
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1. Introduction.

In investigations of stationers stel lar systems an impor-

tant role la played by the choice (finding) of the phase

distribution function. If the latter i s known, i t i s eaay

to сonetruet a dynamical model of a stellar system.

A successful step in this direction is the self-consis-

tent King's model (1966) based on an analytical approximation

(Michie, 1963i King, 1965) to the stationary solution of the

Fotcker-Planck equation (Spitser end Нйги, 195B); thiaappro-

ximation corresponds to the Qauasian velocity distribution

function (subtracting a constant which nullifies the distr i-

bution function for stare with energies В £ 0}t

ш

3ere S * V /2 — ф{Р} is the integral of energy for a star (рай

unit mass){ J is a parameter wbich determines the velo-

city difcperaiou of atare (in tee саяв- of the Haiwell

bition, the latter la equal to(3/2)j~* )} ^ ^ j ie а

gravitational potantiel (i.e> a potential so determined that

it vanishes at the boundary of the «teller Dyctem). JSzpree-

aion (I) contains an odditional sseumption thet all tha

atara bava one and the ваше паев*

The model based on the dietribution function (I) la

ftвв from аоше serious defects inherent in the ordinary

j.Bcthermic model, and with a proper choice o£ the oonoentxa»

tion parameter ^ ( l l 'Р
с
 J (where fj ie the oore
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radius , and Г* 1* the tidal radiue of the «teller

ajstee) this nodel describes satisfactorily the observed

surface brightneea
1
 profile in many globular cluetere and la

• оше elliptical galailee .

In а йоге detailed study of real stellar systems, the

•ituation oocure more and шоге often when the distribution

function (I), describing well the profile of brightness in

external part» of a systen, reproduces it badly in the

central region. Ля natural attempts to гавоте euch a discor-

dance-there appeared extensions of the King's model to the

oa«e of stars of different masses (Da Costa and Peeman, 1976|

Illingworth and King, 1977).

It should be eophaslzed that Introducing into the consi-

deration of stars of different masses is not at all a trivial

procedure. A difference in the star швее в leads to a number

of new effects. Long ago Spitzet (1969) noted that stars of

two masses a^ end o,, which constitute a spherical stellar

system are not in equipartition with each other in a rather

wide interval of parameters Ы the system. Saelaw and Be

Young (1971) and nshniae (1978) revealed, that the sane

effect takes plaoe also at a continuous паев distribution of

•tats. The difference in the masses of the stare constituting

a stellar system leads to a noticeable shortening of the

duration of its dynamical evolution (Spitzes and Hart, 1971;

lightman, 1977).

While the King model with equal-mass stars (a "one-

component model") has been studied rather thoroughly, its



- * -

шапу-coaponent generalization!, including even the sinpliest

case of two aaesee (• "two-oomponent nodal") hare bean inves-

tigated very l i t t l e . Meanhwile, ont-and aany-coaponent Models

ищу differ strongly in their propertiee and, in particular,

in tb« profiles of both the apatlal star density and etar

Telocity diapereion. Some qualitative features of the beha-

viour of the velocity diapereion in a two-oosponent eodel we-

re considered by Blnney (1980), who did not deal with the

distribution functions but supposed that de Taucouleura' law

h1'"1 remains valid also within the internal regions of atol-

lar systems. It is more consistent, however, to proceed from

the distribution function. On the basis of such «n approaob

Da Costa and Freeman (1976) using the «any-ooraponent King's

model, oould aohieve an agreement between their theory and

observations for the globular cluster H3. This «odel was ba-

sed on the phase functions for each oonppnent taken la the

form

where ^ is the velocity dispersion of the i-th oomponent

of the stellar population. Besides, they supposed.that the-

re exists equipartition of mean Icinetlo energy «nong stars

of different masses, i.e.

C3)
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HoweYer, auoh an approaoh la, atriotly apeakin*1, lnoon-

• latent. Indeed, the oonittlon (3) la rigoroualy fulfilled

in • many-oomponent l*oth»raio eyatea only, l*e. when partial

distribution funotlona here the form jJ[s)ooBlp('E/const) ,

which differa from Equation (2)* On the other hand, i f the

distribution funotion la taken la the fora (2) and uaed for

the oaloulation of the veloolty dlaperaion, then, aa ie

ahown In the Appendix, the oenditlon of hydroatatio equilib-

rium la not fulfilled for eaoh olaa* of atara, whioh la

inadmlaaible *

In the preaent work, we have ohoaen another approach.

We take the phaae dlatributlon funotlona In auoh a manner

that for eaoh eteller ooaponest (and, therefore, for the

aymtem aa a whole) the requirement of hjdroatatio «qullib-

riuai la being held. An equilibrium ajratea when oonatruoted

for the moat alnple оме of the two-ooaponent model ahowa

that, deaplte the preaenoe of a hfdroatatlo equillbriua,

the thermal equilibrium ( i . e . equipartltion of mean kinetic

energy between stare of different maaaea} шиз be absent.

In tbia case, the equalities (3) are violated етеп at the

centre of the eyatem, and when approaching ita boundary

thla -violation inoreasea. The leas la the (dimenaionleae)

potential In the oentre of the ayaten, the more ie the de-

viation from tlie thermal equilibrium.[-Ht the ваше time,

* True, under oondltiona of a tjpioal globular oluetot1,

the Taltte of the dimenelonless potential at the centre' of

the eyatea ie auoh that deTiatione froia liydrostatio_
(oont. on p.6)
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under the transition to an laothareio «any-oomponent ayatea

(which la achieved by tending of the oenteai potential to

infinity) there occur» an equipartltion between the oomponenta.

The raaaon la that with the inoreaae of the oentral potential,

the influence of the bounder? of a star oluatet on the dyna-

•ica of the latter deoreaaee. Clearly, in the limiting oaae

of the ia otherale sphere thia influence vanishes completely 1 .

Да ifl ah own in thia paper, a deviation fro* the thermal equi-

librium is related tightly to the character of distribution

of light and heavy atara aa functions of the diatance from

the centre of the systea and, for inatanoa, it determines the

aign of the derivative of the atar velooity diaperaion in the

vicinity of the centre.

She content of the paper ia aa follow*. The fundamental

formulae for the two-component model are obtained in Section 2*

These' formulae are uaed for numerical calculations of the

atar density and velocity diaperaion profiles in Section Э.

Xn Section 4, we diecues the problem of the absence of energy

equipartition between the atara aa well aa the connection of

this effect with the oharaoter of atar density and velocity dia-

peraion dlatributiona. In Section 5, nain ooncluaiona of the

paper are aummasized and poaaible applioatione are outlined.

equilibrium are rather email, and the model say be considered

to be olose to iaothermioal one. In thia oaae, the equalities

(3) are approximately valid.
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2. Th» twd-oomponent model•

OeneraliBing •th» one-cdmponent King'snodel with the d i s t -

ribution funotion given by Equation (1) , we w i l l write the

phaae function» for two atar componentfl with the шаввеа m̂

and Dg > »1 in the form

<4)

>

where В is, as previously, the integral of energy (per unit

•aas).

As in the model associated with Equation (1) those stars

that have В > 0 are removed from the ayateo by en external

tidal field. The tidal radius r
t
 is identical for both groups

at «tare as it doea not depend on the star mass.

As distinot from the distribution functions given by

Equation (2), in Equatione (4) the energy in the exponent

is normalized not to the velocity dieperaion of the i-th

component, but to the factor 6/tt7~. Tbia change in the forn

of phase funotiona,insignificant at the firat sight, has far-

reaching physical coneequeuoes, since unlike Equation (2) It

provides the possibility of constructing a hydroetatleaHy

equilibrium model (see below Equation (14)).

The profilee of etar density and velocity diepesaion

for eaoh component can be found ueing the usual expi'eaelone»
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Introducing the dimeneionlose potential 1/0?) and the heavj to

light star's maee ratio Jm

jj ; / 5 иг, К , (6)

we obtain

«here the function T("L/jia defined by Equation (9) (eee be-

low)! XJQ i s the central value of the potential, and

Equation (5) fields also

where the difference, for example, between b
t
 and j V ^ ia

written to an explicit form. Ihie difference iricreasen with

decreasing 17 . On *he contrary, at {J-^Cfi it Ьеоошев vani-

ahinglj email. In Equatione (7)-(8) we define:

(9)
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whor.

j
о

in the trror Integral. I
o
r further calculation* the following

relation is useful

Introducing the ratio of the oentral densities of the

and light components

(10)

we writ* the total densitj in the forn

Ля to the total Telocity dlaperaion o
t
 > w« hare anaTb-

gouelj to the Delton'slaw for a nixture of gaaeai

whenoe

Ш
I(Vo)

It la easily verified that eaoh oomponent separately,

as well ae the model as a whole, la In the state of hydro-

static equilibrium, i.e. the solutions found aatiety the

Equation
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By introducing the dimenaionleee length

X = l

the Poiaaon equation takea the form

4. z-dH- my x 1Ш

The boundary oonditione f orU are evident!

In the limiting oaae я » 0 (and J*> » I), as ie readilj seen,

we go baclc to the one-component King'в aodel «here 2j - ̂ 5 ^ .

IXI.Humerioal reeulta.

Equation (15) with the boundary conditioned 6) ha a been

integrated numerically by the Runge-Kutt'я method. The trial

calculations show that a variation of the value of the para-

meter \~9 /P does not change qualitatively the character

of the ourvea for deneity and velocity diaperaion, and in the

following computations we have reatricted ouroelvea to two

values of Д equal to zero (which corresponds to the one-

component model) and Л » 3. Aa far aa J^~ ^l/^t *•

concerned, thia parameter waa taken equal to 1, 3/2, 3 and 4.

To demonstrate the basic properties of the eolutlona correa-

ponding to different eetaC£, A and Я , we ehall reatrlot
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ouraelve* to the values of the central potential XJD equal

to 5 and 2.

a) The denalty run

At high valuea at the central potential Uo the properti-

es of the two-component nodal are determined by the effeot

of an inoreased oonoantratlon towards the centra of heavy

partJdte, aa о ош pa red with light onea. This is readily seen

from Figure I oorraaponding to the oaae Uo « 5 . Vote that

at large J** the degree of concentration of the heavy compo-

nent inoreaaaa. In the limiting caae {/—•• o° we are dea-

ling already with the iaothermic aphera, wherein the con-

centration of heavy atara, aa a function of the parameter^»- ,

i s pronounced moat strongly.

The oonaequenoe of the effect deaoribed la that at large

diatanoM fron the oentre the profile of the total deuajLty

i s well approximated by the partial density of light stars

(eee Figure I ) . Tfaia la particularly well aeen for large H. ,

Such a aegretatlon of light and heavy stars ar large JJ0

dO»onatratea that the deviation from .the energy equiparti-

tion between them la comparatively aeall.

i t ie pf intereat that In the two-oomposent ayetem the.

dlatribtttio» of both light and heavy stare differs from the

deneity distribution in the one-ooaponant modal. Therefore

the distribution of the total deneity at large dietanoe in

the case of two components differa from that in the one-com-

ponent model (of. Figures I and 2). From the physical point



of Tiew thia effeot la easily explainedi gravitational

attraction produced by the aecond (heavy) component malcea

the «tare of the firat oomponent to oonoentrate note toward

tbe centre, A similar effect waa noticed earlier by Taff

•t a l . (1975) for two-oooponent isotherinic sphere.

At sttiallT70 the picture df the relative density diatri-

bution of both components ia already different (see Figure 2).

The main difference is that at small Ц, the effect of the

concentration of heavy atara towards the centre ia not very

noticeable. Both the componenta ma Ice a comparable contribu-

tion to the total density, as a result of union at large dia-

tancea from the centre ita profile ia not any more approxima-

ted by the distribution of light stars.

At emailUo the influence of M upon the density diatri-

bution ia ftueh less than at large JJ0.

The above-mentioned epeoifio features of density distri-

bution make us believe that at email Uo in the two-compo-

nent model there ia a strong deviation from equipartition

for «stars of'different шаввев. Specifically, the velocity

dispersion of heavy atara, Ot , at email JJ0 has a higher

value than It follows from the formula ^ г = ^±\(Vtlijftl'i.

Moreover, 6^ may even come very close to в£ . All theae pro-

perties of dn are corroborated below (see Section 4 ) .

b) (Che total velocity dispersion

There exist two essentially different oaeeai

(i) &t monotonously deoreaaea aa the diatanoe frota th«

centre of the model increaeee.
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(11) б! i» not moaotoBoua function of ЭС , it Inoreaaea

at flrat, iiaohfi •••• шаЯагш and than daoreaaee up to

cam toward! the boundary of the eyateaw

Both theee eaee* bold at an? value of U
o
 (•»• Jigurea

3 and 4). Пош figure 3 oorreaponding tol^ - 5 it ia seen

that it ^ . 3/2 the oaaa (i) la realised, and atjU. - 3

we have the oaaa (11). A aiailar' ploture oan be a a en In Fi-

gure 4 corresponding to JJ
0
 - 2 « at J*. » 3/2 and U- • 3

the oaae (1) la realised, but at^t - 5 the velocity dlepei-

• ion la already a non-nonotonoua function of the coordinate

X .

If the central potential IJo i* aitffiolantly large,then

at large dlatanoea froa the centre the Telocity dlaperaion

la wall approximated by the velocity dlaperaion of light

•tare. Гхот figure 3 it la aeen that thla affeot ia nor_e pre-

nounoed at largey*- .

It la of laportanoe to note that at aaoh U
c
 there exists

• certain oritioal value, M^ , auch aa If Я< u the to-

tal velocity diaper a Ion oorreaponde to the oaae (1) while

at J^> f*-
zf
. 1* oorreaponda to the oaee (ii). The depen-

dence of M ^ o n 1J
6
 ia ahown In Figure 5- *h» laaa ia JJ

0
 ,

the larger ia /*j.
r
« at Ug - 5 the value of Д

н
 - 1.60 while

a t l ^ - 2,p
№
 already reaoheo 3.43.

The raaaon for a different behaviour of the total Velo-

city dlaperalon la, aa ia ahown in Seotion 4, in the violation

of the equipartltjtioa prlnoiple. ilreadj from general oonel-

deratione it ia evident that the caoe (1) ia possible only
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if the velocity dispersion of heavy stars exceeds the value

determined fur it by the equipartition law. Indeed, in a two

component laotheretc sphere, «ben there exists strict ther-

mal equilibrium, i.e. (̂ /fij = l / w j % < i » w e haTe

^^t/cloz >0 , True, in a two-oonponent la other mic

sphere both O^ and Og are oonstant so that ©£ will

increase not only in the centre out at any distance from it,

ainoe fax from the oentre there ale eoatlj light etare with

the velooitj dispersion larger than that of heaTj stars.

In the two-oonponent non-leоthermic aodel under ooneidera-

tion the Telocity dispersion always decreases at large

diatanoes from the centre, irrespective of its behaviour

in the central region, and vanishes at the boundary of the

ayatea.

IT. The absence of equipartition.

Because- of.jgravitational encounters ;of stars of diffe-

rent masses, there exists in a etellar syatea (aa in a gaa

mixture where molecules of different мавев collide) a ten-

dency to equipaxtition. However, while in the g
e e
 ntxtuze,

after a proper relaxation, both meohanioal and thermal equi-

librium are established, the situation in the stellar ayatem

is different. One of the basic properties of the two-compo-

nent system cnnsidsped is the absence of equipartition of

mean kinetic energy in stars of different masses. Froa

Equatlona (в) we obtain
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(17)

Since I(KU]>I(TTJ«t J* > 1 (which follows froa Bquatlon

(9)), the right-hand side of equation (17) always exceeds

unity. Hence, the ratio of the mean energies of translatio-

ns 1 notion is a function of U and /t only. At any \J0 in

the centre of the model there is a deviation from the thermal

equilibrium (see figure 6), and thia deviation increases as

Xfo and J** decrease. !Fhis can be easily aeen in the following

way. In a two-ooaponent isothernic sphere (a transition to

whioh from the King's aodel i s realized at JJ0 ~*" °° )•

the exact equality m^At/fl^O^s i hold». But, as

la seen fron figure 6, the ratio of energies just tends to

unity when Xfo~* °° «'eon figure 6 i t ie seen that the in-

fluence of AC on f^n^t/itb^ is essential as long ae

1 ^ M, ̂  3T4« and at larger ЛС a variation of this para-

meter only slightly affebts tbe value of the ratio of kinetic

energies for stars of different «tavsea unlesa JJg ie very

oloae to I. At the ваше time, at any M there i s a strong

dependence between Uo and the ratio W - ^ / l n ^ (see f i-

gure 6) as long ae Uo U not too large.

The violation of equlpar.titlon ia especially large at

• nallUo and №• . In the Uniting ease when (J-+• 0 we have

from Bquation (17) that РГС,^ Itf^St ~~*" Z 1 * e e e

re 6 ) , i . e . 6л"*" 6*1 i what corresponds to the maximum
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poaaible deviation from equlpartition.

The deviation froe equipartltion la sot equally aeneitl-

те to parameter» Uo and M, , and thia difference i* eaay

to aee in Figure 7. When U"
D
 la «mall (for lnatanoe, at

T £ « 1 T 2 ) , the deviation from equpartltlon beoomea noticeable

(it eioeede, aay,25Jt) already when M exoaada unity only

by 10-20*.

If energy equlpattltioa la abaent at the centre of the

model, the deviation on the periphery of the ayatem only

lncreaaaa (Pigure 8).

The abaenoe of thesanl equlllbrlue вам be explained

aa follows. The very exiatenoe of equipartitlon euggeeta

that the dlatribution function of eaoh component ie a Max-

welllan ones -f(EJ °°
 e X
P (-J/oonet). But In out eaae the

exponent in*' the diatribution function for eaoh component

oontalna not one but two terna (aee Squatlon (4))> The leaa

XI
0
 » the move (at a given V ) the energy I and, therefore,

the lea* (oloeer to unity) the tern ехр(-3«
1
К/в ).

The ваше effect on the value of thia tern haa a decreaee of

the parameter h- . Thua, the diatribution function» given

by Equation (4) oan differ considerably,at a oertain combine-
the

tlon of the parameter a,froa^Maxwell funotione, which reaulta

in a deviation from the thermal equilibriua between the oo«-

ponente.

Henoe in the two-oomponent model there шву niiat appreci-

able deviations from thermal equilibrium. The influence of

this effect upon denaity diatribution at different value*
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of U o ha я already been eetsblished above. How let us consider

the Influenoe of this deviation on the Telocity dlspereion.

According to Equation (12), the total Telocity dlapereion

oan be represented ae the product of two terms>

Л ( х ) + Л ( х )
 ' (18)

where d(OC)= d^j&Jx)- The firet of the factors, 6
t
(x) ,

decrease* uonotonoualy with X at any Taluee of 1Л> , y**-

end Л . The value of 6±(Х-), at given Ц> and Л » decreases

the «lower the greater is J^ (Figure 3). As for the aecond

factor in Kquation (i8),it always increases with the inoreaee

of X , since oL(x.) increases (Figure B). As it ie seen, an

Increase of the aeoond factor is stronger at large^4. As a

result, the total Telocity dispersion radically changes its

properties with the increase of M> : at small Ac (i.e. at

J*-^J*it Э 1* oonotonously decreases with dietance frbe the

centre, and at /
t
>/

l

C h
 i* &•• eome maximua and behaves non-

Donotonously.

5. Oonclusions and possible applications

The two-component model of a spherical atellar system

eonstruoted in this paper is, of course, only the most simple

approaching the realistic case of a continuous oaaa distribu-

tion of stare. Nevertheless, it reveals the important effect

discovered by Spitzer (1969), who has ahown that when the

total паев of heavy stars exceeds some critical value, energy

equlpavtition between light and heavy stare becomes impossible»
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Spitzer aaauned б* and 6g to be oonatant in apace1 (leothere-

io approximation) *. Hence, hie analysis' refer я ̂  in faot,

to the two-component !•otherttio dpberef fae looked for the

condition under which equilibrium of such ft aphere Ъеоошеа

already iupotreible. ft»l* condition ia connected, in eaaenoe,

with Jtntonov't criterion (Jttitonov, 1962} for the breatc-up

of e<jullib»ium of an iaotbernlo aphere (see Lightaan and

Sfbepifo, 1978). Our nodal, as distinot from the Spitzet'e one,

fa generally not iaothermic, and the violation of equiparti-

tion in It , including a very aubatantial one, la possible even

when a hydrostatlo equilibrium s t i l l holds. This ia achieved,

generally apeaking, at the expenoe of the break-up of the

thermal equilibrium. I n the hjdroetatioally equilibrium oo-

del preaented above, the deviation from the thermal equilib-

rium increases (at a fixed _/*- ) as the dimenaionleaa poten-

t ia l TJ^ deoraasea.

Aa la aeen front what ha о been ее id above, an eeeential

feature of two-component ayetema la tbe preeenoe in the cent-

re of the system of aome denaity epike. It la oioat pronounoed

In the oaae of equipartition but remain» eaaentlal aleo when

equlpartitlon la violated (see rigwrea 1 and 2). It la of

* Though Spitzer estimated how the numerical coefficient

tn hie criterion change* aleo in the eaae of polltroplo den-

ait? diatributlon, he did not cnneider how thie will affect

the profiles of €t and 6^ (see Section XT).
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interest to о овраге thia oorollary of the eodel with an im-

portant specific feature of вапу •aasive elliptical galaxies,

which, ha* recently been discovered by means of light deteo-

tora of а very high resolutions the oentral regions of these

galaxiea differ considerably in their atruotuje from the pre-

diction» of the standard King's modal and «zhlbit peculiar

peaks of luminosity ouapa (Schwelaer, 1979). Such a spike at

th» oantre of a giant elliptical galaxy M87 was supposed to

be explained by the presence of a eupereaeslve black hole

(Young et al., 1976i Sargent, 1976} de Vauoouleurs and Hieto,

1970). However, such an Interpretation encounters serious

difficulties (Ouriadjan and Ouernoj, 1980). la it was *own

In that paper, the peak of brightness in M 87 oan be associa-

ted with tho existence of a dense stellar kernel, which can

be quantitatively described, already In the framework of en

isotropio spherical system, as a proper generalization of

the King's model.

The two-component eodel of a spherical stellar system

considered above also offers a principled possibility to

Interpret the luminosity cusp at the centre of an ellyptical

galaxy as a purely atelier component,, As distinct from the

two-coeponent isothereieal model where <£-£< > Q , at
OCX.

the centre of the system both cases are possible In our mo-
del» 4 ^ ^ 0 (see Section IT), in increase in the

star velocity dispersion from periphery to the centre, ob-

tained above aa a conaequenoe of our model (вее Section III),
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la in a qualitative agreement with the obaerved bahaviow*

of the velooity dieperaion towarda the centra of К 87 and VOO

3379 (Sargent at el., 197B). it the aaae time our model pre-

diota a non-aonotonoua behaviour of the velocity dlap«raion

near the oentre (of. Blnney, 1980), whloh oan be an obaerva-

tlonal teat of the aodel when obaervation with a larger raae-

lation beoome poaalble.

In Section IT, we have conaidered in detail the retulta

of the abaenoe of equipartltion in energy tor an equilibrium:

stellar ayateau But in the framework of equilibrium modala

one cannot anawer the queation what la reaponelble for

the brealc-up of equipartition. To anawer thie queation one

•hould analyae Initial atages of the atelier ayetem'a evo-

lution. In particular, already the «echanieii of violent rela-

xation (Xarnden-Bell, 1967)' lndlcataa that eaxly atagea of

stellar ejetea contraction are ecooapanied bj the tendency

for eatablishing equality in velooitj diopereiona of light

and heavy etsre. Thie шау evidently be one of the reaaona

for the abeenoe of energy equlpettition studied in detail

in the present paper. The. numerical experiments on the evolu-

tion of large Я- body gravitational ayatema (e.g. Anreeth,

1974) confirm that the energy equipartition among partiolea

of different maaaea dose no.t have time to eetabliah, and

aa a tendehoy to euoh an equipartition there forma a rapidly

contracting core of heavy particles, whloh tends to achieve

the atate of infinite dene It у tot only aeveral initial rela-

xation timea. Thus, the abeenoe of equipartition oan beoome

not only the consequence of the atelier ajetem evolution but

alao one of the faotora affecting Its further behaviour.
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Appendix

Oonaidai; a two-ooapouent Model with star naaaea *
1
 and

•
2
 and the phase functiona

«X ;

«here d
oi
 and 0 ь

а
 aee velocity die pet «lone of the ooiiponent»

at the oeatre of the ejetea. to take the ptaeae jTunotione in

the fora (A.I) ia the аава ая to eaaume the pieaence in the

centre of a thereal equilibriuai

With the help of Squat ion (A.I) we will find the denaity «nd

Telooitj diepereion pvofilea nalng the ияца1 expveaelona

The calculations yield

и.,)

where



- 22 -

with I/ and KlTj glTen fay «quatlona (6) and (9) of the

Mi» text of the paper.

Ггоя Bquationa U.4) and (1.5) It la readily •••*> that

the equation of hjdroetatie equilibrium for «aoh oo«potx«nt

doea oot hold. Tor the «»•*•• aa a «hole there la no hydro-

atatlo equilibrium either. Thua, the init ial ohoioe of th*

distribution functione la the fore given bj Xqmation (A.I)

ia laoompatlble with hjdroatatio aquillbrim of eaoh ooa»o-

neat.
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figure oaptiona

Pig.1. Star density run aa a function of a dieensionlesa

dlstauee ttom tba centre of the ay*tea

(U, . 5, \ m 3, ул, т 3/2 and 3).

Heavj lines denote the total atar denaitj, dotted

lines stand for partial densities of the components J^

and J-g , and dashed line ah owe the density distri-

bution in the one-oonponent King's model*

Pig.2. The same as in figure I at JJ
0
 " 2

Fig.3. Star Telocity dispersion aa a function of dimenalonleas

distanoe from the oentre of the system ( \J
0
 m 5|

Л " 3| A " 3/2 and 3). Heavy linea show the total

Telocity dispersion (5^ (see Equation (18)), dotted

lines show profiles fox partial velooity dispersions

ffi and 6*4 .

Fig.4. The same aa in Figure 3 at l/
0
 a 2.

Pig.5. The dependence of the critical value of the parameter

Fig.6. The ratio of the characteristic energiee of heavy and

light stars at the centre of the model as a function

of U
o
 at different values of A .

Fig.7» Dashed line Units from below the range of the para-

met ere ( К ,XJ
0
 ) wherein the deviation front equiparti-

tlon e^oeeds 2556, I.e. ( Щ г ^ - Yd^l )ltYb
1
e\^- 0.25.

ft . n

Fig.6. The ratio Пт-̂ г /ftl^i •• • function of the
coordinate ЭС at TJ

0
 - 5, \ » 3 , M > • 3/2 and Э.
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