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ABSTRACT

A8 a generalization of the widely used King's model for
s spherical stellar system containing etars of identical
wasses, a fwo-couponan§ model of an equilibrium stellar
system oonsisting of stars of two different masmses is built
proceeding from a proper generalization of the dismtribuiion
function. In such a asystem, the principle of thermal equilib-
rium generally epeaking, doea not hold, i.e. equipartition
of mean kinetic energy between 1light and heavy atars is abaent

The radial distribution of partial density and velocity
dispersion for .each of the components and of the total den-
sity and velocity dispersion is obtained. The profiles of
both the total density and velocity dispersion differ consi-
derably from those given by the one-component King's model,
especially in the centre of the aystem, In particular, the
velocity dispersion of mtars may have there a non-monoionous
behaviour. The possibility to spply the wany-component model
for the explanation of the recently deiscovered luninosity
cups in the central regions of some elliptical galaxies is -
briefly discussed.



1. Introduction,.

In investigations of stationary stellar systems an impor-
tant role is played by the choice (finding) of the phase
distribution function. If the latter is known, it is easy
10 construct a dynamical model of a stellar system.

A successful step in this direction is the self-consis~
tent King's model (1966) bssed on an énelytical approximation
(Michie, 1963; King, 1965) to the stationary solution of the
Pokker-Planck equation (8pitzer and Hirm, 1958); thimappro-
ximgtion corresponds to the Gaussian veloclity distribution
function (subiracting a constant which nullifies the distri-
bution function for stars with energles B> 0}:

{g)= C[expraste)-1] @

Here Ez‘liz/e i @(I*,’ ig %he integral of energy for a star (pex
unit mageldy J is 8 perameter which dsterymines the velo-
clity dimpersion of atare (in %he came of ths Maxwell distri-
bution, the latter is equal to(3/2)]™® ) gﬁ(rj is a shifted
graviational pojentisl ({.e. a poteniial so determined thai
it vanishes at the boundary of ile stellsr mystew). Expres-
gion (I) contains an cdditional assumption thet ell ¥ha
atara bave one and the wame mask.

7he model based on the distribution funetion (I) ia
fyes from some serious defscts inherent in the ordinary
isothermic wodel, and with a propez cholce of the concembracr
tion parameter f?(rt’/hcj (whexs [y s the core
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radius ,+and rt is the tidal radius of the stellar
asystem) this model describes satisfactorily the observed
surface brightness' profile in many globular clusters and in
some elliptical gallxiol.

In a more detailed study of real stellar systems, the
situation ooccurs more and more often when the distribution
function (I), describing well th; profile of brightness in
external parts of a system, reproduces it badly in the
central region. As natural attempts to remove such a discor-
dancethere appeared extensions of the King's model to the
case of stares of different masses (Da Costa and Feeman, 1976;
Illingworth and King, 1977).

It should be emphasized that introducing into the consi-
deration of stars of different masses is not at all a trivial
procedure. A difference in the star wasses leads to a number
of new effects. Long sgo Spitzer (1969) noted that stars of
two masses my and w, which constitute a spherical stellar
system are not in equipartition with each other in a rather
wide interval of parameters 6f the symtem. Saslaw and De
Young (1971) and Vishniac (1978) revealed. that the same
effect takes place also at a continuous mass distribution of
stars. The difference in the mamses of the stars oonﬂtituting
a stellar system leads to a noticeable shortening of the
duration of its dynamical evolution (Spitzer and Hart, 1971;
Lightwman, 1977).

While the King model with equal-mass stars (a "one-
component model") hes been studied xather thoroughly, its
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many~-component generalizatione, including even the simpliest
case of two masses (a “two-component model®) have been inves-
tigated very little. Meanhwile, one-and many-componeni models
mgy differ etrongly in their properties and, in particular,
in the profiles of both the spatial star density and star
velocity dispersion, Some qualitative features of the beha-
viour of the velocity dispersion in a two-component model we-
re considered by Binney (1980), who did not deal with the
distribution functions but supposed that de Vaucouleurs' law
pHY yemaine valid also within the internal regions of stel-
lar aystems. It is more comsistent, however, to proceed from
the distribution function. On the basis of such an appxoach
Da Costa and Freeman (1976) using the many-component King's
model, could achieve an agreement between their theory and
observatiohs for the globular cluster M3. This wodel was ba-
sed on the phase functions for each component taken in the

form

§ (€)= eacp E/ét ] t5)

where ¢&; is the velooity dispersion of the i-th component
of the atellar population. Besides, they supposed.that the-
re exists equipartition of mean kinetic energy among stars
of different mamses, l.e.

2_ 2
miét—h’l-zé - . (3)
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Howevex, much an approach is, sirictly speaking, incom-
sistent. Indeed, the condition (3) is rigorously fulfilled
in @ mapy-component isothermic system only, i.e., when partisl
distribution functions have the form £(E)m exp(-Efeonst)  »
which differs from Equation (2). On the other hand, if the
distribution funmction is taken im the form (2) end used for
the caloulation of the velooity dispexsion, then, as is
shown in the Appendix, the condition of hydrostatic equilib-
rium is not fulfilled for each class of stars, which is
insduissible ™

In the present work, we have chosen another approach.
We take the phase disiribution funotions in such a warner
that for eamoch stellar component (and, therefore, for the
system as a whole) the requifement of hydrostatic equilib-
¥ium is being held. An equilibrium system when . constyucted
for the most simple case of the two-component model shows
that, desplte the presence of a hydrostatic equilibrium,
the thermal equilibriua (i.e. equipartition of mean kinetic
energy between stmxrs of difi"n:mt masses) may be abasent.

In this case, the equalities. (3) aré violated even ai the
centxo of the system, and when approaching ite bommdary
this violation lnoreases. The lems i3 the (dimensionlesa)
potential in the centre of tho system, the more im the de~
viation from the thermal eguilibrium.[At the sams tiue,

. True, uwader bonditions of a typlcal globulay olustox,

the value of the dimersionless potential at the centre of

the aystem is much that deviations from hydrostatic
(oont. on p.6)
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under the transition to an isothermic many~-component system
(which is achieved by tending of the central potential to
inginit:) there occurs an equipartition between the components.
The reason is that with the incresse of the central potential
the influence of the boundary of a stay cluster on the dyna-
mics of the latter decreases., Clearly, in the lipiting ocasme

of the isothermic sphere this influence vanishes completely ] .
As 18 shown in this paper, a deviation from the thermal equi~
librium is related tightly %o the character of distribution

of light eand heavy stars as functions of the distance from
the centre of the system and, for instance, it determines the
sign of the derivative of the star veloocily dispersion in the
vicinity of the centre.

The conteut of the paper is as follows. The fundamental
foxrmulae foy the two~-component model are obtained im Bection 2.
These" formulae are umed for numerical caloulations of the
wiar density and velocity disperaion profiles in Section 3.

In Section 4, we discuss the problem of the absence of energy
equipartition bétween the stars as well as the connection of
this effect with the oharacter of star denmsity.and velocity dis-
persion dietributions. In Section 5, main conclusiona of the

paper are summarized and posasible applications are outlined,

equilibrium are rather small, end the wodel may be considered
fo be clomse to imothermical one. In thism case, the equalities
(3) are approximately valid.



2. The two-component model.

Generalizing the one~-cdémponent Kingsmodel with the dimt-
ribution function given by Equation (1), we will write the
phease functions for two star component® with the maBses m,

and u, > u, in the form

fie1= A Lexpt- 25m)-4] ”
§1E)=Ag [eap(-250)- 4]

where B is, as previously, the integral of energy(per unit
maes) . .

As in the model associated with Equation (1) those stars
that have B > 0 are removed from the system by an external
tldal field. The tidal radiue ry ia identical for boih groups
of etavs a8 it does not depend on the star mass.

Ag distinet from the distribution functions given by
Equation (2), in BEquations (4) the energy in the exponent
is normalized not to the velocity dispersion of the i-th
oomponent, but to the facﬂorﬁ/n%. This change 1in the form
of phase functions, inmlgnificant at tha first eighi, has far-
reaching physical conssgquences, since unlike Bquation (2) i+t
provides the possibility of constructing e hydrostaticelly
squildbyium model (@ee below Eguation (14)).

The profileskof star density end veloclty dispersion

fox each componen’ can be found using the usual expresgionss
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ﬁ,'mjg(E)d,BU )

Uaf E)dU/(f{ oL3 @

Introducins the dimensionless potential .U(\") and the heavy to
light stars mass ratio /u.

U(r).-‘.%e"h (p(t‘) I e m, fm, (6)

we obtain

ﬁ=ﬁxI(U)/[(Uo) ’

£o= B TRO)I(pTG) o
where the function I('U') ia defined by Equation (9) (mee be~-
low); U;, is the centiral value of the potential, and

ﬁ,,=2ﬂA¢m (—32'%‘)3/21 (Ua) y
Be= ZﬂrAzrng(""ﬁ) () -

Equntion (5) yielda also
B U
‘* ﬁ (i 15 I(U)) :
y (U)"
6,2 <1 15 1) )’ =

where -t;he differenca, for example, between é and ﬁ/m, is

wirittenin an explicit form, This difference 1ncreaaeu with
decreasing U « On fthe contrary, at U—"m it becomes vani-
ghingly small. In Equationa (7)-(B) we define:

5 6!‘{( !/Z}Exp(U)- %‘Ual?:'Utla’ (9)



where i
U

2
enf(U"= 2 | gt dt
A
0

iw the error integral. For further calculations the following
relation is useful a

%w= L)+ &U™.

Introducing the ratio of the central densities of the
heavy and light components

)\=ﬁz/fii , (10)
we write the total density in the forxm
, _I@ (AT (11)
fe g 0 *"I(rvo)] '

As to the total velooity dimpersion é& » We have andlo-
gously to the Daltonslaw foxr a mixture of gases:

pe=pa Rt ,

(12)
whenoe
L) .
p- & (B350 ] + sepemllon)-£(0])
t m, 1) + 2 I(*U) '
I " " ()

It ie eamily verified that each component separately,
a8 well as the model as a whole, is in the state of hydro-
static equilibrium, i.e. the solutions found satisfy the
Equation



- 10 =

f;(r‘) ﬁ dwl‘)

(14)
By introducing the dimensionless length

ac:l/ 120G mefu
P ?

the Poimson equation takes the form

d'U | 2 dU._I(w)_, IV
a—i_i ¥ a -—I(_;}J A (/‘U;) (15)

The boundary conditions forU are evident:

U=1; 5 g—g:o at X =0 . (16)

In the limiting case A = 0 (and j‘« = I), as i8s readily seen,
we go back ito the one-~component King's model where 2]": af’—'.

III. Numerical results.

Equation (15) with the .boundary conditions: (16) has been
integrated numerically by the Runge-xutt'nmethod. The trial
calculations show that & variation of the value of the para-
meter A: M/ﬁ.‘ does not change qualitatively the character
of the curves for density and velocity dispersion, and in the
following computations we have restricted ourselves to two
values of ;\ equal to zero (which corresponds to the one-
component model) and A = 3. As far as /11"— m,/m, in
concerned, this parameter was taken equal to 1, 3/2, 3 and 4.
To demonstrate the basic properties of the soclutions corres-

ponding to different setsU;. /‘t and A , we shall restriot
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ourselves to 'the values of the central potential U; equal
to 5 and 2.

a) The denaity run

At high values of the central potemtial U; the properti~
es of the two-component model are determined by the effect
of an increased concentration towards the centre of heavy
partidles, as compared with light ones. This is readily seen
from Fgure I oorresponding to the case U; = 5, Note that
at large /4: the degree of concentration of the heavy compo~-
nent increases. In the limiting case U—- 0o we are dea-
ling already with the isothermic sphere, wherein the con-
centration of heavy stars, as a function of the puzaneter/ﬂ ’
is pronounced wost strongly.

The consequence of the effect desoribed is that at large
distances from the centre the profile of the total density
is well approximated by the partial density of light stars
(see Pigure I). This is particularly well ameen for largeji "
Such a megretation of light and heavy stars ar large U,
deZmonstrates that the deviation frow .the energy equiparti-
tion between them is comparstively small.

It is of interest that in the two-component system the
distribution of both light and heavy stars differs from the
density distribution in the one-component model. Tharefora
the distribution of the tgtgl deneity at large distance in
the case of two components differs from that in the one-com-
ponent model (of. Figures I and 2). Prom the phyaical point
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of view this effect im easily explained: gravitational
attraction produced by the mecond (heavy) component makes
the stars of the first component to concentrate more toward
the centre, A similar effect was noticed earlier by Taff

et al. (1975) for two-component isothermic sphere.

At suall [J, the ploture of the relative density distri-
bution of both componentis is already different (see FigureAE).
The main difference is that at small [L the affeot of the
concentration of heavy etars towards the ceantre is not very
noticeable. Both the components make a comparable contribu-
tion to the total density, as a result of whioh at large dis-
tances from the centre its profile is not any more npprniima~
ted by the distribution of light stars.

At amall]j; the influence ofJﬂ- upon the density distyri-
bution is #uch less than at large [, .

The above~mentioned specific features of density distri-
bution make us beliave that at smgll (); in the two-compo~
nent model there is & strong deviation from equipartition
for stars .of  different masses. Specifically, the veloocity
dispersion of heavy stars, Cﬁ , at small [L .has a higher
value than it follows from the formila 6,= &,{/m,/m,
Mpreover, 5; may even come very close to ¢, . All these pro-
perties of éﬁ, are corroborated below (see Section 4).

b) The total velocity dimpersion

There exist two esmsentially different cases:

(1) C& monotonously decresses as the distance from the

centre o the model increases.
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(11) 6; is not monotonous function of X , it increases
at first, reachgs seme maXiwum snd then decreases up to
gero towards the boundary of the eystem.

Both these cases hold at any velue of U; (see Pigures
3 and 4). From Pigure 3 corresponding toU; = 5 1t is seen
that at '/W = 3/2 the case (1) is realized, and at U = )
we have the case (ii). A similay picture can be seen in Fi-
gure 4 corresponding to U; =2 at /4& = 3/2 and/t- =3
the case (i) is realized, but at _/4— = 5 the velocity disper-
mion is already a non-monotonous function of the coordinate
X .

If the central potential U, is sufficiently. large,then
at large distances from the centre the velocity dispersion
is well approximated by the velocity dispersion of light
stars. From Figure 3 it is meen that this effect is moye pro-
nounced at lluoj“ .

It is of iuporiance to note that at nohU; thers exists
a certain oritical vuluo,Jwa , such as 1if ‘/L<‘/um the to-
tal velocity dimpersion corréspondes to the case (i) while
at jk>j4.c,. it corresponds to the case. (1i).. The depen-
dence bof _/“’u on U; 1-_lhuwn in Figure 5. The lass is U; »
the larger 1-/47”1 at I];, a 5 the value or/“c,, = 1.60 while
utU; = 2, M, already reaches 3.43.

The reasom for a different'behaviour of -the total velo-
oity dispersion is, as is shown in Section 4, in the violation
of the squipartiStion prinoiple. Alyready from general consi-
‘deratione it is evident that the case (1) is poesible only
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if the velocity dispersion of heavy stars exceeds the value
determined for it by the equipartition law. Indeed, in a two
component isotheymic sphere, when there exists strict ther~
wal equilibrium, i.e. éi/di :'_Vmi'na <1 s We have

do’t/dﬂ: >0 . True, in a two-component isothermic
sphere both di and 62 are constant so that ét will
increase not only in the centre buit at any distence from it,
aince far from the cenire there axe mostly light stars with
the velocity disperasion larger than that of heavy stars.
In the two-component non-isothermic model under considera-
tion the velocity dispersion always decreeses at large
distances from the centre, irreapective of its behavioux
in the central region, and vanishes at the boundary of the
asystem.

Iv. fhe absence of .equipartition.

Because of gravitational encounters jof stars of diffe-~
rent masseés, there exists in a stellar aystem.(as in a gas
mixture where molecules of different maases collide) a ten~-
dency to equipartition. However, while in the ges mixzture,
after a proper relaxation, both mechanical and.thermal equi-
librium are esmtablished, the situation in the stellar system
is different. One of the basic properties of thée two-compo-
nent system conmidered is the absence of equipartition of
mean kinetic energy in stars of different masses. From

Equations (8) we obtain
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Bince I(}*U)> [(U)at M > 1 (wnich follows frou Equation
(9)), the right~hand side of Equation (17) always exceeds
unity. Hence, the ratio of the mean energies of translatio-
nal motion is a funotion of U and j(« only. At any U:, in
the centre of the model there is a deviation from the thermal
equilibrium (see Figure 6), and this deviation increases as
U, and M decrease. This can be easily seen in the following
waye. In a two-component imothermic mphere (e transition to
whioh from the King'm model is realized at U; — o )
the exact equality mzé:/m1¢z= 1 holds. But, as
im seen from Figure 6, the ratio of energies just tends to
unity when U;-voo «Prom Figure 6 it im seen that the in-
fluence of M on mad:/m‘d: is essential as long as

1 é‘/u. £ 344, and at larger J“' a variation of this para-
meter only slightly affetts the value of the ratio of kinetic
energies fox etars of different wasses unless U; ie very
close to I, At the same time, at any /& there im a strong
dependence between U and the ratio mzd:/m,gf (eee Pi-
gure 6) as long as U; is not too large.

The violation of equipartitiion is especially large at
lmllU; nnd'/4 + In the limiting case when U—h 0 we have
from Equation (17) that m,o’:/mldf - /‘4. (sse Figu-
re 6), i.e. éz-—* ®; , what corresponds to the maximum
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possible deviation from equipartition.

The deviation from equipartition is not equally sensiti~
ve to parameters 1]; and J}o , and this difference is easy
to see in Pigure 7. When T); is small (for instence, at
-CE- 1+2), the deviation from egqupartitionm becowmes noticeable
(it exceeds, say,25%) already when J/i exceeds unity only
by 10-20%.

If energy equipartition is absent at the centre of the
model, the deviation on the periphery of the system only
increases (Pigure B).

The absence of thermal equilibrium cam be explained
as follows, The very exlstence of equipartition suggests
that the distyibution funotion of each componeni is a Max~
welllan one: }(E) «w exp (-E/const). But in our case the
exponent in® the distribution function for each component
contains not one but two terms (see Equation (4)). The lesa
U, , the moxe (at a given V' ) the energy E and, therefore,
{he less (clomser to unity) the term aip(-BliliP Ye
The mame effett on the value of this term has a decrease of
the patameter;/t o Thus, the distribution functions given
by Equation (4) can differ considerably,at a certain combina-
tion of the parameters,frozﬁi-xvall functions, which results
in a deviation from the thermal equilibpium batween the com~
ponenta.

Henoe in the two-component model there may axist appreci-
able deviations from thermal equilibrium, The influence of
this effect upon density distribution at different values
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ofU,, hae already been established above. Now let us consider
the 4influence of this devidtion on the velocity dispersion.
According to Equation (12), the total velocity dispersion

can be represented as the product of two terms:

fux) + o) )

P )+ By () o
where ol (X)= d:(:r)/q%i). The first of the factors, 67;(oc) ,
decreases monotonously with X at any values of Ua ’ /“
snd A . The value of 612(1), at givenUo and/‘ , decreases
the slower the greater is /"’ (Pigure 3). As for the second
factor in Bquation (18),1t always increases with the increase
of OC , mince ol(X)increases (Figure B). As it ism seen, an
incyrease of the second factor is stronger at latgeJN'. As &
result, the total velocity dispersicon radically changea ite
properties with the increase Df./L : at amallJfL (Lee. at
/“ffﬂb ) it wonotonously decremses with distance frém the
centre, and at J/*;:/%’ it has some maximum and behaves non-

()= 6,()-

monotonously.

8. Conclusions and possible applications

The two=~component model of a spherical stellar system
constructed in this paper is, of course, only the most simple
approaching the realistic case of a continuous mass distribu-
tion of stars. Nevertheless, it reveals the important effect
discovered by Spitzer (1969), who has shown that when the
total wass of heavy stars exceeds some critical value, energy

aquipartition between light and heavy stars becomes imposaible.
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Spitzer assumed 0, and 52 to be constant in spacé (isotherm-
ic approximgtion) ", Hence, his analyeid refers, in fact,

to the two~component igotherwic dpheréj he Iooked for the
condition undey which squilibrium of éucli & sphere becomes
dlready fuposeible. Thi# condition i connected, in essence,
with Antonce's criterion (Antonov, 1962} fox the bresi-up

of eguilibrium of an isothermic sphere (ses Lijghtwan and
Shapiro, 1978). Our wodel, as distinct from the Spitzer's one,
i{s generally not isothermic, and the violation of equiparti=~
tion in it, including a very subatantial one, is poasible aven
when a hydrostatio egquilibrium still holds. This is achieved,
generally speaking, at the expence of the break-up of the
thermal equilibxium. Ip the hydrostatically equilibrium mo=~
del presented above, the deviation from the thermal equilib-
rium increases (at a tixed_/* ) as the dimensionlesg poten~-
tial'tn decreases,

As is seen from what has been saeid above, an essential
feature of two~component systems is the presence in the cent-
re of the aystem of some density spike. It is most pronounced
in the case of equipartition but remains essential also when
equipartition ia violated (see Pigures 1 and 2). It ie of

® Though Spitzer estimated how the numerical coefficient

in his criterion changes alsc in the case of politropic den-
sity distribution, he did not cnnsider how this will affect
the profiles of Ea and O, (see Bection IV).
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interest to compare thim corollary of the model with an im-
portant specific festure of msny massive elliptical galaxies,
which, hes recently been discovered by means of light detec-
tors of a very high resolution: the central regions of these
galaxies differ considerably in their structure from the pre-
dictions of the standard King's model and exhibit peonliar
peaks of luminosity cusps (Schweizer, 1979). Such a spike at
the centre of a giant ellipiical galaxy MB7 was supposed to
be explained by the presence of a supermassive black hole
(Young et al., 1978; Sargent, 1978; de Vaucouleurs and Nieto,
1970). However, such an interpretation encounters serious
difficulties (Gurszadyan and Oszernoy, 1980). As it was shown
in that paper, the peak of brightness in M 87 can be assacla~
ted with {he existence of a dense stellar kernel, which can
be guantitatively t’luc.-.xvibexd,l already in the framework of an
isotropic apherical sysiem, as a proper generalizatibm of
the King's wmodel.

The two-component model of a spherical stellar aystew
considered above alsc offers a principled possibility to
interpret the luminosity cusp at the centre of an ellyptical
galaxy as a purely stellar couponent. As distinct from the
two-component isothermical wodel where &L‘% >0 , at
the centre of the system both cases are possible in ouy mo-
dels %—i“- % 0 (see Section IV). in increasse in the
stax veloolty dispersion from periphery to the centre, ob~
" tained above as a consequence of our model (see Section III),
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is in a gualitative ng;aelant with the observed bshaviour

of the veloolty dispersion towards the centre of M B7 and NGC
3379 (Sargent st al., 197B). At the same time our model pre-
dicts a non-monotonous behaviour of the velocity dismpersion
near the centre (cf. Binney, 1980), whioh can be an observa-
tional test of the wodel when observation with a largerreso-
lution become pomsible.

In 8S8ection IV, we have considered in detail the resulis
of the absence of equipariition in energy for an equilibriuw
gtellar system. But in the framewoxk of equilibrium models
one cannot answer the queastion what la xesponsible for
the break-up ofequipartition. To anawer this question one
should analyse initial stages of the stellar aysiem's evo-
Jution. In particular, already the mechanism of violent rela~-
zation (ILynden-Bell, 1967) indicates that saxly mtages of
stellar system contraction are accompanied by the tendenocy
for establishing equality in velooity ¢1aporuion- of light
and heavy stars. This way avidently be one of the reasons
for the absence of energy sqnipaxtition studied in detail
in the present paper. The numeriocal experiments on the evolu-
tion of large N- body giavitational systems (e.g. Aarmeth,
1974) confirm that the energy equipartition among particles
of different masses does not have time to establish, and
as a tendehoy to such an equipartition there forms a rapidly
contracting core of heavy particles, which tends to achieve
the state of infinite density fox only several initial rela-
xation times. Thus, the abmence of equipartition can become
not only the consequence of the stellar mystem evolution. but

also one of the factors affecting ite further behaviouy.
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Appendix
Consider a two~component wodel with star nasses ®, and
L and the phase functions

fue)= As[expt-3e62)-1]
f (€)= Ay expt3€je;)-1]

where do‘ and 0:,9 are velooity dispersions of the componentis
&t the canfrc of the system. o take the phase functions in

the form (A.I) is the same as to sssume the presence in the
centre of a therwal equilibriuam:

)
m?,/ml.:dai/dﬂﬁ :f‘_ 4 (‘02)

With the help of Equation (A.I) we will find the density and
veloolty dispersion profilés using the usual expressions

veg . .
=sz§¢°“" s e é’u (i
0
The calculations yleld

Rl
.ﬁ “ ( .ﬁ. ﬁﬂ-[((ﬂ'g,) 1 (A.4)

&= :‘[ an ;gv"zj/[l(v 50,1,
o[ 1) (0] [T ], o

where

(A.3)
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Bizerhim (560 | (1-4,2)
b0, = 37A, (% 65:) :’[I(U}— m]
b= 37As (% é") [ I{pui)- u(/‘U) "]

with U ena [(T) given by quations (6) ana (9) of the
main text of the paper.

Prom Bquations (A.4) and (A.5) it is readily seen that
the equation of hydrostatic equilibyrium for each component

2 _np d .
dF (ﬁ..é")_ 3f 'E‘? (4.6)

does not hold. Por the system as a whole there is no hydro=-
statioc equilibrium either. Thus, the initial choice of the
distribution functions in the form given by Eguation (A.I)
is incompatible with hydrostatic equilibrium of each compo-

nent.
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Pigure captions

Star density run as a function of a dimensionless
distance from the centxe of the system

(Uo= 51 A =3, M= 3/2.and3).
Heavy lines denote the total star density, dotted
lines stand for partisl densities of the components P
and f; , end dashed line shows the density distri~
bution in the one~component King's model.
The same as ip Pigure I at U;, = 2
Star velocity dispersion as a functlion of dimensionless
distance from the centre of the mystem ( U; = 5;

A - 3./«. = 3/2 and 3). Heavy linea show the total
velooity dispersion 6': _(ue Bquation (18)), dotted
lines show profiles fox partial véloeitg dispersions
0112 and‘ Olq,z.
The same as in Figure 3 at U:z = 26
The dependence of the critical value of the parameter
_/“--m [m on the value otU; o .
The ratio of the chsruotenutio energien of heavy and
light stars at the ceu\?re of the model a8 a function
of U; at different values ot/"’ .
Dashed line limite riam below the range of the para-
metexrs ( /‘4— U; ) wherein tho deviation from equipnni-
tion exceeds 255. i.8. (m mjdi )/m16 0.25.
The ratio madz /m‘o’f‘ as a function of the

coordinate X at U, =5, )\ = 3, M = 3/2 and 3.
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