УДК 517.9

Устойчивость, синхронизация и разрушение квазипериодических колебаний^{*}

В.С.Анищенко, С.М.Николаев

Саратовский Государственный Университет 410026, Россия, Саратов, ул. Астраханская, 83 E-mail: wadim@chaos.ssu.runnet.ru, sergeyn@chaos.ssu.runnet.ru

Получено 11 сентября 2006 г.

Вводится новая автономная дифференциальная динамическая система размерности N = 4, имеющая в качестве решения устойчивые двухчастотные колебания. Показано, что система из двух генераторов квазипериодических колебаний с симметричной связью может иметь в качестве решения устойчивый четырехмерный тор с резонансными структурами на нем в виде трехмерного и двумерного тора. Установлено, что с ростом интенсивности шума, чем выше размерность тора, тем быстрее он разрушается.

Ключевые слова: квазипериодические колебания, синхронизация, хаос

V. S. Anishchenko, S. M. Nikolaev Stability, synchronization and destruction of quasiperiodic motions

We propose a new autonomous dynamical system of dimension N = 4 that demonstrates the regime of stable twofrequency motions. It is shown that system of two generators of quasiperiodic motions with symmetric coupling can realize motions on four-dimensional torus with resonant structures on it in the form of three- and two-dimensional torus. We show that with increase of noise intensity the higher the dimension of torus the faster it is destroyed.

Keywords: quasiperiodic motions, synchronization, chaos Mathematical Subject Classifications: 39Axx, 93D05

^{*}Работа выполнена при поддержке Министерства образования и науки РФ в рамках программы «Развитие научного потенциала высшей школы».

Введение

Квазипериодические колебания, их устойчивость, бифуркации и переходы к хаосу продолжают оставаться предметом детальных исследований специалистов [1, 2]. Это обусловлено тем, что квазипериодические автоколебания являются наиболее сложными из регулярных и реализуются, как правило, в многомерных динамических системах N > 3. Интерес к анализу динамики систем с квазипериодическими аттракторами высокой размерности во многом обусловлен желанием решить проблему турбулентности [3]. В частности, до сих пор остается не совсем ясным вопрос о реализации механизма Ландау-Хопфа [4, 5], который предполагает возможность перехода к хаотической динамике за счет каскада бифуркаций рождения квазипериодических колебаний нарастающей размерности. Интерес к анализу этого механизма несколько уменьшился в связи с появлением результатов работ [6, 7], из которых следовало, что переход к хаосу осуществим при возмущении систем, реализующих режим трех- и четырехчастотных колебаний. Если это так, казалось бы, можно исключить из рассмотрения многомерные торы (N > 4), так как они не являются структурно устойчивыми. Однако возникает ряд проблем, требующих детального обсуждения. Во-первых, многими авторами установлено, что режимы квазипериодических автоколебаний с числом независимых частот N > 4 наблюдаются и могут быть устойчивыми (см. например [8]).

Далее, известно, что переход к хаосу возможен при разрушении тора минимальной размерности (N = 2) [9, 10]. Возникает вопрос, в чем состоит принципиальная особенность динамики систем в режиме трех- и четырехмерного тора? Ведь именно результат работ [6, 7] послужил основанием ввести в рассмотрение механизм Рюэля—Такенса в качестве альтернативы механизма Ландау—Хопфа!

В настоящей работе мы постараемся детально исследовать устойчивость, синхронизацию и индуцированный внешним шумом переход к хаосу в системе, реализующей режим автоколебаний с четырьмя независимыми частотами. Полученные результаты будут использованы в дальнейшем при анализе динамики систем, реализующих квазипериодические автоколебания более высокой размерности N > 4.

Для достижения поставленной цели мы вводим в рассмотрение новую автономную диссипативную динамическую систему, реализующую режим двухчастотных автоколебаний. Для получения четырехчастотных автоколебаний, которым в фазовом пространстве отвечает устойчивый четырехмерный тор, мы используем систему двух симметрично связанных систем, каждая из которых имеет решение в виде двухчастотных колебаний.

Генератор квазипериодических колебаний с двумя независимыми частотами

Рассмотрим в качестве исходной известную модель генератора Анищенко—Астахова [10], схема которого представлена на рис. 1. Генератор включает классический генератор Ван дер Поля, в котором введена дополнительная нелинейная инерционная обратная связь. Уравнения генератора представляют собой трехмерную динамическую систему с тремя параметрами:

$$\begin{aligned} \dot{x} &= mx + y - xz - dx^3, \\ \dot{y} &= -x, \\ \dot{z} &= -gz + g\Phi(x). \end{aligned} \tag{1.1}$$

Первые два уравнения системы (1.1) описывают генератор Ван дер Поля. В этом легко убедиться, положив $\dot{z} = 0$, и используя $\Phi(x) = x^2$. Как было показано, система (1.1) реализует переход

Рис. 1. Схема генератора Анищенко-Астахова.

Рис. 2. Схема инерционного каскада дополнительной обратной связи: а) генератора Анищенко–Астахова, б) генератора квазипериодических колебаний.

к хаосу с соответствии с теоремой Шильникова [11] при условии, что нелинейная функция $\Phi(x)$ является асимметричной относительно переменной x и задается в виде:

$$\Phi(x) = I(x)x^2, I(x) = \begin{cases} 1, x > 0, \\ 0, x \le 0, \end{cases}$$
или, например:

$$\Phi(x) = \exp x - 1.$$
(1.2)

Условия асимметрии (1.2) обеспечивают существование в системе (1.1) особого решения в виде петли сепаратрисы седло-фокуса и, как следствие, реализацию режима спирального хаоса. С физической точки зрения это достигается за счет самосогласованного воздействия на основной усилитель со стороны обратной связи, заданной третьим уравнением в системе (1.1). При малых амплитудах сигнала x(t) это воздействие незначительно, и система (1.1) генерирует предельный цикл. С ростом параметра возбуждения m интенсивность колебаний x(t) растет, сигнал обратной связи z(t) нарастает тоже, что вызывает нелинейное управление коэффициентом усиления основного усилителя. Система реализует последовательность бифуркаций удвоения периода циклов и переход к хаосу.

С целью обеспечения незатухающих двухчастотных колебаний в систему (1.1) необходимо ввести элемент, характеризуемый собственной частотой, отличающейся от резонансной частоты контура генератора. Одним из возможных способов является использование колебательного контура в цепи дополнительной обратной связи. Необходимо сделать так, чтобы сигнал обратной связи z(t) включал колебания независимой частоты, которые будут модулировать коэффициент усиления и обеспечивать квазипериодические автоколебания.

Обратимся к схемам, представленным на рис. 2. На Рис. 2(а) показана схема инерционного каскада дополнительной обратной связи генератора Анищенко–Астахова. Каскад представляет

собой RC-цепочку, описываемую одномерным дифференциальным уравнением (третье уравнение в системе (1.1)). На рис. 2(б) представлена схема видоизмененного инерционного каскада, который включает колебательный контур некоторой резонансной частоты. Уравнения, описывающие схему рис. 2(б), имеют вид:

$$\dot{z} = \varphi, \dot{\varphi} = -\gamma \varphi + \gamma \Phi(x) - gz.$$
(1.3)

где γ — параметр затухания, а g — параметр, представляющий нормированную резонансную частоту нового фильтра. Нетрудно убедится, что уравнения (1.3) описывают диссипативный колебательный контур в режиме вынужденных колебаний:

$$\ddot{z} + \gamma \dot{z} + gz = \gamma \Phi(x). \tag{1.4}$$

Введем видоизменную обратную связь в генератор рис. 1 так, чтобы управляющий сигнал обратной связи представлял собой $\dot{z}(t) = \varphi(t)$. Уравнения генератора будут иметь вид:

$$\dot{x} = mx + y - x\varphi - dx^{3},
\dot{y} = -x,
\dot{z} = \varphi,
\dot{\varphi} = -\gamma\varphi + \gamma\Phi(x) - gz.$$
(1.5)

Система (1.5) является нелинейной диссипативной динамической системой размерности N = 4 и характеризуется четырьмя управляющими параметрами: m — параметр возбуждения, d — параметр нелинейной диссипации, γ — параметр затухания и g — параметр инерционности фильтра. Существенными параметрами системы (1.5) являются два: параметр возбуждения генератора m и параметр инерционности g, характеризующий резонансную частоту фильтра.

При задании $\Phi(x)$ в соответствии с (1.2) система (1.5) имеет решения в виде устойчивых двухчастотных колебаний. Пример указанного режима иллюстрирует рис. 3.

На рис. 4 представлена бифуркационная диаграмма системы (1.5) на плоскости основных управляющих параметров m и g для фиксированных значений $\gamma = 0.2$ и d = 0.001. Функция $\Phi(x)$ в (1.5) задавалась в виде $I(x)x^2$ (1.2).

На линии m = 0 в соответствии с мягкой бифуркацией Андронова—Хопфа рождается устойчивый предельный цикл T_0 , который при пересечении бифуркационной линии l_1 претерпевает бифуркацию удвоения периода, на линии l_2 бифуркацию удвоения периода претерпевает цикл, возникший на линии l_1 (рис. 4). Бифуркационная линия l_t отвечает условию выхода на единичную окружность пары комплексно-сопряженных мультипликаторов цикла T_0 и мягкому рождению двумерного тора ($\mu_{1,2} = e^{\pm j\theta}$, бифуркация Неймарка). Естественно, двигаясь вдоль линии l_t угол θ будет пробегать множество рациональных значений, отвечающих резонансам на торе. В качестве примера на рис. 4 нанесена область резонанса $\theta = 1 : 4$, ограниченная линия ми седло-узловых бифуркаций резонансного цикла на торе l_r , опирающаяся на точку A коразмерности 2. Выше линии рождения тора l_t показана линии l_u хаотического аттрактора. Линия l_c имеет место кризис (разрушение) возникшего на линии l_u хаотического аттрактора. Линия l_dc отвечает бифуркации слияния и последующего исчезновения пары седловых циклов. На рис. 4 черным выделена область значений параметров m и g, в которой проведены эксперименты рассиматриваемые ниже.

Рис. 3. Режим квазипериодических двухчастотных колебаний: а) временная реализация, б) проекция фазового портрета, в) спектр мощности. (*m* = 0.06, *g* = 0.5, *γ* = 0.2, *d* = 0.001)

Рис. 4. Бифуркационная диаграмма режимов генератора ($\gamma = 0.2, d = 0.001$). $l_{1,2}$ — линии бифуркаций удвоения периода циклов, l_t — линия рождения тора, l_u — линия разрушения тора, l_c — линия разрушения хаотического аттрактора, l_r — линии, ограничивающие область резонанса на торе 1 : 4, l_{dc} — линии кратных циклов, A — точка коразмерности 2, отвечающая условию $\psi = 1$: 4.

НЕЛИНЕЙНАЯ ДИНАМИКА, 2006, Т. 2, №3, с. 267-278.

H

2. Исследуемая система

Рассмотрим систему двух связанных генераторов квазипериодических колебаний (1.5) с симметричной связью. Уравнения системы имеют следующий вид:

$$\dot{x}_{1} = mx_{1} + y_{1} - x_{1}\varphi_{1} - dx_{1}^{3} + k(x_{2} - x_{1}),
\dot{y}_{1} = -x_{1},
\dot{z}_{1} = \varphi_{1},
\dot{\varphi}_{1} = -\gamma\varphi_{1} + \gamma\Phi(x_{1}) - gz_{1},
\dot{x}_{2} = mx_{2} + y_{2} - x_{2}\varphi_{2} - dx_{2}^{3} + k(x_{1} - x_{2}),
\dot{y}_{2} = -x_{2},
\dot{z}_{2} = \varphi_{2},
\dot{\varphi}_{2} = -\gamma\varphi_{2} + \gamma\Phi(x_{2}) - g_{1}z_{2}.$$
(2.1)

Интенсивность связи определяется параметром k. Зафиксируем значения параметров m = 0.06, $\gamma = 0.2, g = 0.55, d = 0.001$. Значение параметра m = 0.06 специально выбрано заметно меньше критического $m = m^* \cong 0.08$, при котором имеет место разрушение двумерного тора в отдельном генераторе (см. Рис. 4). При фиксированном значении параметра g = 0.55 первый генератор в автономном режиме демонстрирует квазипериодические колебания с двумя независимыми частотами f_{01} и f_{11} . Несущая частота f_{02} и частота модуляции f_{12} второго генератора управляются параметром g_1 . В случае $g \neq g_1$ все частоты колебаний генераторов различны. Таким образом, варьируя параметр g_1 второго генератора относительно фиксированного параметра g первого генератора, можно менять расстройку по частотам модуляции и несущей.

Как показали исследования [12], области захвата частот модуляции и частот несущей взаимодействующих генераторов системы (2.1) различны: область захвата частоты модуляции лежит внутри области захвата несущей. При приближении параметра g_1 к параметру g при фиксированном значении параметра связи k сначала захватываются несущие частоты, а затем частоты модуляции и, соответственно, числа вращения θ_1 и θ_2 колебаний генераторов ($\theta = f_1/f_0$). Данное явление показано на Рис. 5(а-в), на котором изображены зависимости несущих частот, частот модуляции и чисел вращения генерируемых колебаний от параметра g_1 .

Помимо анализа временных реализаций колебаний генераторов их спектров мощности эффекты частичного и полного захвата можно диагноситровать по полному спектру ляпуновских характеристических показателей (ЛХП). На рис. 6 представлена зависимость ЛХП от параметра *g*₁, соответствующая графикам на рис. 5¹.

Вне области синхронизации спектр ЛХП включает в качестве старших четыре нулевых по-казателя:

$$0, 0, 0, 0, -, -, -, -$$

При пересечении линии *l*_c число нулевых показателей уменьшается до трех:

$$0, 0, 0, -, -, -, -, -$$

Имеет место первый частичный резонанс, которому отвечает трехмерный тор, лежащий на гиперповерхности четырехмерного тора. На этом этапе несущие частоты колебаний генератров становятся равными. В области захвата числа вращения число нулевых показателей равно двум:

¹Расчеты спектра ЛХП проводились с использованием программы SimPack с детальным учетом скорости сходимости, позволяющим оценивать погрешность вычислений.

Рис. 5. Зависимость частот колебаний генераторов от параметра g_1 при фиксированном значении параметра связи k = 0.003: а) частоты модуляции, б) несущие частоты, в) числа вращения.

Рис. 6. Эволюция спектра показателей Ляпунова при изменени параметра g_1 ($m = 0.06, \gamma = 0.2, g = 0.55, d = 0.001, k = 0.003$). $\Lambda_{7,8}$ не изображены.

При этом становятся равными частоты модуляции и независимыми остаются лишь две частоты (несущая и частота модуляции). На поверхности четырехмерного тора появляется резонансная структура в виде двумерного тора.

Вне области синхронизации в системе (2.1) реализуется режим четырехмерного тора T_4 . Этот режим можно назвать режимом биений при взаимодействии двумерных торов с различными числами вращения. С пересечением линий l_c внутрь области синхронизации имеет место переход $T_4 \rightarrow T_3$, возникает трехмерный тор. Далее с пересечением линии l_m появляется двумерный тор $T_3 \rightarrow T_2$. Таким образом, меняя параметр g_1 относительно фиксированного парметра g, можно менять размерность резонансной струтктуры на четырехмерном торе.

3. Хаотизация квазипериодических колебаний под воздействием внешнего аддитивного шума

В соответствии с результатом Рюэля-Такенса при возмущении четырехмерного тора должна последовать хаотизация траекторий. Под возмущением в данном случае пони маются малые иенения вида функций в правых частях уравнений (2.1). Мы выберем наиболее общий способ: будем воздействовать на систему аддитивным источником белого шума. Согласно Винеру, белый шум содержит все возможные возмущения, однако надо отдавать себе отчет, что в этом случае система становится неавтономной. Уравнения системы примут вид:

$$\begin{aligned} \dot{x}_1 &= mx_1 + y_1 - x_1\varphi_1 - dx_1^3 + k(x_2 - x_1) + \sqrt{2D}\xi_1(t), \\ \dot{y}_1 &= -x_1, \\ \dot{z}_1 &= \varphi_1, \\ \dot{\varphi}_1 &= -\gamma\varphi_1 + \gamma\Phi(x_1) - gz_1, \\ \dot{x}_2 &= mx_2 + y_2 - x_2\varphi_2 - dx_2^3 + k(x_1 - x_2) + \sqrt{2D}\xi_2(t), \\ \dot{y}_2 &= -x_2, \\ \dot{z}_2 &= \varphi_2, \\ \dot{\varphi}_2 &= -\gamma\varphi_2 + \gamma\Phi(x_2) - g_1z_2. \end{aligned}$$

$$(3.1)$$

Коэффициент $\sqrt{2D}$ определяет интенсивность шумового воздействия, она одинакова для каждого из генераторов системы (3.1). Функции $\xi_1(t)$ и $\xi_2(t)$ – случайные δ -коррелированные функции от времени с нормальным распределением и нулевым средним.

Согласно графику эволюции спектра ЛХП, показанному на Рис. 6, выберем три значения параметра g_1 , соответствующих колебаниям на двумерном, трехмерном и четырехмерном торе:

$$T_2 : g_1 = 0.5505,$$

 $T_3 : g_1 = 0.555,$
 $T_4 : g_1 = 0.565.$

Рассмотрим влияние белого шума интенсивности $\sqrt{2D}$ на три выбранных режима. Все перечисленные режимы устойчивы к воздействию малого шума ($\sqrt{2D} \leq 0.0001$). На рис. 7(а, б) изображены спектры колебаний при g = 0.5505. Данное значение параметра соответствует режиму двумерного тора в отсутствии шума. На Рис. 8(а, б) показаны спектры колебаний при g = 0.555, что соответствует режиму трехмерного тора. Спектры колебаний при значении g = 0.565, соответствующие четырехмерному тору, показаны на рис. 9(а, б). Как видно из приведенных рисунков, малый шум (D = 0.0001) не разрушает установившихся для данных значений параметров квазипериодических колебаний. При увеличении шума (D = 0.01) все три режима становятся хаотическими. Необходимо выяснить: как зависит величина интенсивности шума, необходимая для перехода от квазипериодических к хаотическим колебаниям, от размерности тора?

Рис. 7. Спектры мощности колебаний а) $\sqrt{2D} = 0.0001$, б) $\sqrt{2D} = 0.01$. (g = 0.5505 — полная синхронизация)

Рис. 8. Спектры мощности колебаний а) $\sqrt{2D} = 0.0001$, б) $\sqrt{2D} = 0.01$. (g = 0.555 — частичная синхронизация)

Рис. 9. Спектры мощности колебаний а) $\sqrt{2D} = 0.0001$, б) $\sqrt{2D} = 0.01$. (g = 0.565 — несинхронный режим)

Для ответа на поставленный вопрос производился расчет старшего показателя Ляпунова выбранных режимов при увеличении интенсивности шума в системе. Результаты представлены на рис. 10. Как видно из рисунка, при увеличении интенсивности шума все рассматриваемые режимы разрушаются, и во всех случаях система переходит к режиму хаотических колебаний. Пунктирная линия на данном рисунке соответствует ошибке вычислений, которая составляла

. НЕЛИНЕЙНАЯ ДИНАМИКА, 2006, Т. 2, №3, с. 267—278 _–

Ħ

Рис. 10. Зависимость старшего показателя Ляпунова от интенсивности шума $\sqrt{2D}$ для колебаний на T_4 (g = 0.565), T_3 (g = 0.555) T_2 (g = 0.5505).

 $\Delta \Lambda \sim 5 \times 10^{-5}$. На рис. 11 представлена зависимость критических интенсивностей шума, отвечающих переходу к хаосу для торов различной размерности. При увеличении интенсивности шума сначала возникает хаотизация траекторий на четырехмерном торе, затем фиксируется хаос при воздействии на режимы трехмерного и двумерного торов.

Как видно из приведенных выше результатов, все рассмотренные режимы квазипериодических колебаний устойчивы к воздействию малого шума. Однако, с увеличением его интенсивности во всех случаях происходил переход к хаосу. Малого шума ($\sqrt{2D} \lesssim 0.0001$) недостаточно, чтобы возник хаотический режим колебаний. При увеличении уровня шума, начиная с определенной амплитуды в системе устанавливается хаотический режим колебаний. Вначале, при малых интенсивностях шума, хаос возникает на четырехмерном торе. Резонансные структуры в виде трехмерного и двумерного торов оказываются более устойчивыми к шумовому воздействию. С ростом интенсивности шума вначале разрушается трехмерный тор и, наконец, двумерный тор.

Отметим одно важное обстоятельство. Воздействие шума может приводить к переключению системы на другой, хаотический аттрактор, который может возникнуть в окрестности тора. Тор при этом может существовать и характеризоваться регулярной квазипериодической структурой траекторий. Специальные расчеты с изменинием начальных условий показали, что в окрестности тора других притягивающих множеств обнаружить не удалось. В связи с этим мы полагаем, что воздействие шума приводит к хаотизации траекторий именно на четырехмерном торе.

4. Выводы

В результате проведенных исследований в работе предложена новая схема генератора двухчастотных колебаний и сформулирована его математическая модель. Модель является автономной динамической системой в R^4 с четырьмя управляющими параметрами (1.5). В зависимо-

Рис. 11. Зависимость интенсивности шума, при которой происходит переход к хаосу, от размерности тора *n*.

сти от значений параметров генератор реализует режимы периодических колебаний, бифуркации удвоения периода циклов, бифуркацию мягкого рождения двумерного тора, удвоения тора и переходы к хаосу через разрушение двумерного тора.

Области синхронизации несущих частот и частот модуляции в рассматриваемой системе из двух генераторов с симметричной связью не совпадают, поэтому при вариации параметров можно реализовать колебания на четырехмерном торе и наблюдать резонансные структуры на нем в виде трехмерного и двумерного торов. При этом все перечисленные режимы устойчивы и не разрушаются при малом шумовом возмущении.

С ростом интенсивности возмущения движение на четырехмерном торе хаотизируется. Резонансные структуры в виде трехмерного и двумерного торов препятствуют эффекту хаотизации. Однако с ростом возмущения и эти структуры становятся неустойчивыми и имеет место переход к хаосу.

Результаты настоящей работы дают основание полагать обоснованным факт хаотизации траекторий на четырехмерном торе при шумовом возмущении. Новой деталью в рассмотренной проблеме является установление того, что эффекты синхронизации в виде резонансных структур на четырехмерном торе повышают устойчивость квазипериодических колебаний и для перехода к хаосу требуют увеличения интенсивности шумовых возмущений.

Список литературы

- [1] Гонченко С.В., Стенькин О.В., Шильников Л.П. О существовании счетного множетсва устойчивых и неустойчивых инвариантных торов у систем из областей Ньюхауса с гетероклиническими касаниями // Нелинейная динамика, 2006, т. 2, № 1, с. 3–25.
- [2] Анищенко В. С., Астахов В. В., Вадивасова Т. Е., Нейман А. Б., Стрелкова Г. И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. М., 2003.

- [3] Фрост У., Моулден Т. Турбулентность. Принципы и применения. М.: Мир, 1980.
- [4] Ландау Л.Д. К проблеме турбулентности // ДАН СССР, 1944, т. 44, № 8, с. 339–342.
- [5] Hopf E. A mathematical example displaying the features of turbulence // Comm. Pure. Apple. Math., 1948, V. 1, p. 303–322.
- [6] Ruelle D., Takens F. On the nature of turbulence // Commun. Math. Phys., 1971, V. 20, p. 167–192.
- [7] Newhouse S., Ruelle D., Takens F. Occurrence of strange axiom A attractors near quasi periodic flows on T^m , $m \ge 3 //$ Commun. Math. Phys., 1978, V. 64, p. 35–40.
- [8] Tavakol R., Tworkovsky A. An example of quasiperiodic motion on T⁴ // Phys. Lett. A, 1984, V. 100, No. 6, 273.
- [9] В.С. Афраймович, Л.П. Шильников Инвариантные двумерные торы, их разрушение и стохастичность // В сб. «Методы качественной теории дифференциальных уравнений», Горьковский госуниверситет, Горький, 1983, с. 3–26.
- [10] Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.
- [11] Shilnikov L. Mathematical Problems of Nonlinear Dynamics: A Tutorial // Int. J. Bif. Chaos., 1997, V. 7, No. 9, 1953.
- [12] Anishchenko V., Nikolaev S., Kurths J. Winding number locking on a two-dimensional torus: synchronization of quasiperiodic motions // Phys. Rev. E, 2006, V. 73, 056202.