

Г. Г. Исламов, А. Г. Исламов

О ЧИСЛЕННОМ РЕШЕНИИ КРАЕВЫХ ЗАДАЧ ДЛЯ ЛИНЕЙНЫХ УРАВНЕНИЙ

Общие утверждения относительно линейной краевой задачи для функционально—дифференциальных уравнений систематизированы в монографии [1]. Однако вопросы численного решения конкретных классов краевых задач рассмотрены в ней лишь фрагментарно. Мы показываем, что в случае гильбертова пространства восходящий к Э. Шмидту метод минимальной конечномерной аппроксимации компактной инъекции, порождающей функциональное пространство гладких функций, позволяет строить ненасыщаемые алгоритмы решения линейных краевых задач.

Пусть [a,b] - отрезок числовой прямой, C - поле комплексных чисел с обычной нормой $|\cdot|$, L_2 - пространство комплекснозначных функций y(t), у которых скалярные функции вещественной и мнимой части $\operatorname{Re} y(t)$ и $\operatorname{Im} y(t)$ измеримы по Лебегу, а функция |y(t)| квадратично суммируема на отрезке [a,b]. Наделим L_2 структурой сепарабельного гильбертова пространства, задав в нем скалярное произведение элементов u(t) и v(t) по правилу $\langle u,v\rangle=(b-a)^{-1}\int_a^b u(t)\overline{v(t)}\,dt$, где черта сверху обозначает комплексное сопряжение. На классе комплекснозначных функций y(t), у которых $\operatorname{Re} y(t)$ и $\operatorname{Im} y(t)$ абсолютно непрерывны, задан оператор дифференцирования $D=\frac{1}{i}\frac{d}{dt}(i=\sqrt{-1})$. Пусть W_2^m - пространство функций $x:[a,b]\to C$, на которых определен оператор m-го дифференцирования D^m со значениями в пространстве L_2 . Из результатов работы [2] для скалярного случая вытекает следующая факторизация тождественного оператора в пространстве W_2^m :

$$x = \Lambda \delta x + \sum_{j=1}^{m} u_j r_j(x). \tag{1}$$

Здесь компактный оператор $\Lambda:L_2\to W_2^m$ задается при $m\geqslant 2$

равномерно сходящимся на отрезке [a,b] разложением

$$\Lambda f(t) = \frac{\{i(t-a)\}^{m-1}}{(m-1)!} \int_a^b f(s) \, ds + \sum_{k=-\infty, k\neq 0}^{\infty} \left(\frac{b-a}{2\pi k}\right)^m \varphi_k(t) \left\langle f, \varphi_k \right\rangle,$$

где $\varphi_k(t) = \exp\{2\pi ki(t-a)/(b-a)\}$. Линейный оператор $\delta: W_2^m \to L_2$ определяется равенством

$$\delta x(t) = D^m x(t) + (D^{m-1} x(a) - \int_a^b \psi_1(s) D^m x(s) \, ds) / (b - a).$$

Функционалы $r_j, j = 1, \dots, m$ имеют специальный вид

$$r_j(x) = D^{j-1}x(a) - \int_a^b \psi_{m-j+1}(s)D^m x(s) \, ds, j = 1, \dots, m-1,$$
$$r_m(x) = \frac{1}{i}(D^{m-1}x(b) - D^{m-1}x(a)),$$

где многочлены $\psi_i(t)$ могут быть вычислены рекурсивно:

$$\psi_1(t) = i\{(t-a)/(b-a) - 1/2\},$$

$$\psi_j(t) = (b-a)^{j-1} \sum_{a=0}^{\infty} (2\pi k)^{-j} - i \int_a^t \psi_{j-1}(s) \, ds, j \geqslant 2.$$

Система элементов u_1, \ldots, u_m биортогональна системе функционалов r_1, \ldots, r_m и образует базис конечномерного подпространства E_m , натянутого на многочлены $(t-a)^j, j=0,\ldots, m-2, (t-a)^m+mi(t-a)^{m-1}$. Хотя имеет место теоретико-множественное включение $W_2^m \subset L_2$, будем рассматривать W_2^m как самостоятельное комплексное банахово пространство с нормой $\|x\|_{W_3^m}$

$$= \|\delta x\|_{L_2} + \sum_{j=1}^m |r_j(x)|$$
. Линейный ограниченный оператор \mathcal{L} , отоб-

ражающий банахово пространство W_2^m в банахово пространство L_2 , и система m линейно независимых функционалов l_1, \ldots, l_m из сопряженного пространства $(W_2^m)^*$ определяют краевую задачу $\mathcal{L}x = f, l_1(x) = \beta_1, \ldots, l_m(x) = \beta_m$, которую будем предполагать однозначно разрешимой. Запишем эту задачу в виде операторного уравнения Ax = g, где оператор A взаимно однозначно

Стибражкает Фанахов пространство $U = W_2^m$ пагнеевривание ведение $F = L_2 \times C^m$ банаховых пространств. Введем шаг h = 1/n, где n - натуральное число и построим линейные конечномерные операторы I_h и J_h соответственно в пространствах L_2 и U по следующему правилу. Если $p \in L_2$ дается разложением

в ряд Фурье
$$p = \sum_{k=-\infty}^{\infty} \varphi_k \langle p, \varphi_k \rangle$$
, то $p_h = I_h p = \sum_{k=-n}^{n} \varphi_k \langle p, \varphi_k \rangle$, причем $F_h = I_h L_2 \times C^m$ будет конечномерной аппроксимацией пространства F . Норма $\|q_k\|_{L^\infty} = \|p_k\|_{L^\infty} + \sum_{k=-n}^{n} |\beta_k|$ адемента $q_k = \frac{1}{2} \|p_k\|_{L^\infty} + \frac{1}{2} \|\beta_k\|_{L^\infty}$

пространства
$$F$$
. Норма $\|q_h\|_{F_h} = \|p_h\|_{L_2} + \sum_{j=1}^m |\beta_j|$ элемента $q_h =$

= $(p_h,\beta_1,\dots,\beta_m)\in F_h$ будет согласована с нормой пространства F, т.е. $\|q_h\|_{F_h}\to \|q\|_F$ при стремлении $h\to 0$. Здесь норма элемента $q=(p,\beta_1,\dots,\beta_m)\in F$ дается равенством $\|q\|_F=$

$$= \|p\|_{L_2} + \sum_{j=1}^m |\beta_j|$$
. Если $x \in U$ имеет разложение (1), то $x_h = 1$

$$=J_h=\Lambda I_h\delta x+\sum_{j=1}^m u_jr_j(x),$$
 причем конечномерное пространство

 $U_h = \Lambda I_h L_2 \oplus E_m$ будет согласованной аппроксимацией основного пространства U. Теперь мы в состоянии воспользоваться изложенной в монографии [3] операторной формулировкой теоремы Рябенького и Филиппова о связи аппроксимации, устойчивости и сходимости.

Список литературы

- [1] Азбелев Н. В., Максимов В. П., Рахматуллина Л. Ф. Элементы современной теории функционально—дифференциальных уравнений. Методы и приложения. Москва: Институт компьютерных исследований. 2002. 384 с.
- [2] Исламов Г. Г. Оценки минимального ранга конечномерных возмущений операторов Грина // Дифференц. уравнения. 1989. Т. 25, № 9. С. 1496-1503.
- [3] *Бабенко К. И.* Основы численного анализа. М.–Ижевск, НИЦ "РХД". 2002. 848 с.

ggislamov@gmail.com