Об уравнениях Абеля и интегралах Ришело

Ю. А. Григорьев, А. В. Цыганов

Санкт-Петербургский государственный университет Россия 198904, Санкт-Петербург, Петродворец, улица Ульяновская д.1 yury.grigoryev@gmail.com, tsiganov@mph.phys.spbu.ru

Получено 19 октября 2009 г.

Рассматриваются суперинтегрируемые системы типа Ришело с N степенями свободы, для которых $n \leq N$ уравнений движения являются уравнениями Абеля на гиперэллиптической кривой рода n-1. Соответствующие дополнительные интегралы движения являются полиномами второго порядка по импульсам.

Ключевые слова: суперинтегрируемые системы, разделение переменных, уравнения Абеля

Yu. A. Grigor'ev, A. V. Tsiganov On the Abel equations and the Richelot integrals

The paper deals with superintegrable N-degree-of-freedom systems of Richelot type, for which $n \leq N$ equations of motion are the Abel equations on a hyperelliptic curve of genus n-1. The corresponding additional integrals of motion are second-order polynomials in momenta.

Keywords: superintegrable systems, separation of variables, Abel equations Mathematical Subject Classifications: 37K10, 70H06, 70H20

НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т. 5, №4, с. 463–478 _

В старинных малочитаемых сборниках научных учреждений, а также в обширной научной переписке ученых прежних времен заключается громадное количество научного материала, из которого всякий, кто сумеет, может вычитать многое побуждающее к собственной работе, попутно может и научиться многому полезному.

К. Вейерштрасс, «Речь, произнесенная при вступлении в должность ректора Берлинского университета 15 октября 1873 года»

1. Введение

В классической механике суперинтегрируемой системой с N степенями свободы называется система, обладающая более чем N функционально независимыми интегралами движения, определенными однозначно на всем 2N-мерном фазовом пространстве. В частности, если число интегралов составляет 2N - 1, то система называется максимально суперинтегрируемой. Динамика таких систем особенно интересна тем, что все траектории являются замкнутыми и периодическими [5, 22]. С математической точки зрения, в этом случае фазовое пространство имеет топологически структуру дуальной пары, состоящей из инвариантного слоения Лиувилля–Арнольда лагранжевыми торами и (коизотропного) полярного слоения [25].

В квантовой механике Зоммерфельд и Бор первыми обратили внимание на то, что системы, допускающие разделение переменных более чем в одной системе координат, могут иметь дополнительные интегралы движения. Суперинтегрируемым системам свойственно дополнительное вырождение уровней энергии, от которого можно избавиться, приняв во внимание квантовые числа, соответствующие дополнительным интегралам движения; некоторая часть спектра может быть вычислена алгебраически, а соответствующие волновые функции являются комбинациями классических ортогональных полиномов. Один из лучших примеров такого рода — гармонический осциллятор и задача Кеплера-Кулона. В последние годы было опубликовано большое число работ, посвященных суперинтегрируемости; большинство из них посвящено интегралам движения второго порядка (новые результаты и ссылки на дополнительную литературу могут быть найдены в работах [3, 6, 9, 11, 15, 18, 21, 28, 32, 33]).

Систематическое исследование суперинтегрируемых систем началось с найденного Эйлером в 1761 году алгебраического интеграла для дифференциального уравнения

$$\frac{d\mathbf{x}_1}{\sqrt{f(\mathbf{x}_1)}} \pm \frac{d\mathbf{x}_2}{\sqrt{f(\mathbf{x}_2)}} = 0,$$

где f — произвольный полином четвертой степени [12]. Классификация соответствующих двумерных суперинтегрируемых систем типа Штеккеля была построена в работе [18].

Теорему Абеля можно считать обобщением результатов Эйлера. Напомним, что уравнения Абеля

$$\sum_{j=1}^{n} \frac{u_i(\mathbf{x}_j) \, d\mathbf{x}_j}{\sqrt{f(\mathbf{x}_j)}} = 0, \qquad i = 1, \dots, p,$$
(1.1)

играют ключевую роль в классической механике и их применение для построения траекторий движения связывают с именами Якоби и Ришело (см. тринадцатую лекцию в книге

_НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т. 5, №4, с. 463–478 _

Якоби [13]). В современной математике первый подход, или отображение Абеля–Якоби, является одной из важнейших конструкций алгебраической геометрии, связывающей алгебраическую кривую с ее многообразием Якоби. Второй подход, связанный с работами Ришело, приводит к теории теорем сложения, теории модулей, криптографии и др.

Целью этой работы является обсуждение построения методом Ришело дополнительных интегралов движения для уравнений Абеля и построение соответствующих *N*-мерных суперинтегрируемых систем классической механики. В данной работе рассматриваются только классические суперинтегрируемые системы, хотя соответствующие результаты можно легко обобщить и на квантовый случай.

Структура данной статьи такова: в разделе 2 приведен краткий обзор результатов Ришело, затем обсуждаются возможные применения этих результатов для классификации суперинтегрируемых систем типа Штеккеля. В разделе 3 построена и исследована классификация суперинтегрируемых систем, допускающих разделение переменных в ортогональной системе координат. В заключении обсуждаются некоторые открытые задачи.

2. Суперинтегрируемые системы типа Ришело

В этом разделе мы используем обозначения Ришело [27].

Пусть у — алгебраическая функция от х, заданная уравнением вида

$$\Phi(\mathbf{x}, \mathbf{y}) = \mathbf{y}^m + f_1(\mathbf{x})\mathbf{y}^{m-1} + \dots + f_m(\mathbf{x}) = 0, \qquad (2.1)$$

где $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$ — рациональные полиномы от x. Согласно теореме Абеля, система p дифференциальных уравнений

$$\frac{du_i}{dx_1}dx_1 + \dots + \frac{du_i}{dx_N}dx_N = 0, \qquad i = 1, \dots, p$$

имеет дополнительные алгебраические интегралы, если N > p и если u_1, \ldots, u_p являются линейно независимыми абелевыми интегралами первого рода на алгебраической кривой (2.1). При доказательстве теоремы Абеля [2, 8, 16] используют **неявные** определения этих интегралов в виде различных детерминантов матриц ко-вычетов в точках ветвления.

Для некоторых алгебраических кривых (2.1), например гиперэллиптических кривых, существуют также **явные** формулы для интегралов, предложенные Эйлером [12], Лагранжем [24], Якоби [14], Ришело [27], Вейерштрассом [34] и другими [2, 8, 16, 23].

2.1. Интегралы Ришело

Следуя обозначениям Ришело [27], рассмотрим гиперэллиптическую кривую

$$y^{2} = f(x) \equiv A_{2n}x^{2n} + A_{2n-1}x^{2n-1} + \dots + A_{1}x + A_{0}$$
 (2.2)

и систему n-1 дифференциальных уравнений Абеля

. НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463–478 ₋

Пусть a_k — значения x в точках ветвления кривой (2.2) и $F(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$, тогда в общем случае дополнительные интегралы уравнений Абеля (2.3) имеют вид

$$C_{k} = \frac{\left[\frac{\sqrt{f(\mathbf{x}_{1})}}{F'(\mathbf{x}_{1})} \cdot \frac{1}{a_{k} - \mathbf{x}_{1}} + \dots + \frac{\sqrt{f(\mathbf{x}_{n})}}{F'(\mathbf{x}_{n})} \cdot \frac{1}{a_{k} - \mathbf{x}_{n}}\right]^{2}}{\left[\frac{\sqrt{f(\mathbf{x}_{1})}}{F'(\mathbf{x}_{1})} + \dots + \frac{\sqrt{f(\mathbf{x}_{n})}}{F'(\mathbf{x}_{n})}\right]^{2} - A_{2n}} F(a_{k}).$$
(2.4)

Если $A_{2n} = 0$, то дополнительные интегралы уравнений (2.3) равны

$$C_{k} = \left[\frac{\sqrt{f(\mathbf{x}_{1})}}{F'(\mathbf{x}_{1})} \cdot \frac{1}{a_{k} - \mathbf{x}_{1}} + \dots + \frac{\sqrt{f(\mathbf{x}_{n})}}{F'(\mathbf{x}_{n})} \cdot \frac{1}{a_{k} - \mathbf{x}_{n}}\right]^{2} \sqrt{F(a_{k})}.$$
(2.5)

Подчеркнем, что эти интегралы определены **неявно** (абстрактно), так как мы не можем построить **явно** корни a_k полинома степени 2n при n > 1. Заметим, однако, что в множестве интегралов C_k всего n-1 функционально независимых интегралов и, естественно, функции от этих интегралов также являются интегралами движения.

Используя специально выбранные функции интегралов C_k , можно избежать необходимости вычислять значения a_k от x в точках ветвления [14, 27, 34]. Например, Ришело в своей работе нашел два **явных** алгебраических интеграла

$$K_1 = \left[\frac{\sqrt{f(\mathbf{x}_1)}}{F'(\mathbf{x}_1)} + \dots + \frac{\sqrt{f(\mathbf{x}_n)}}{F'(\mathbf{x}_n)}\right]^2 - A_{2n-1}(\mathbf{x}_1 + \dots + \mathbf{x}_n) - A_{2n}(\mathbf{x}_1 + \dots + \mathbf{x}_n)^2$$
(2.6)

И

$$K_{2} = \left[\frac{\sqrt{f(\mathbf{x}_{1})}}{\mathbf{x}_{1}^{2}F'(\mathbf{x}_{1})} + \dots + \frac{\sqrt{f(\mathbf{x}_{n})}}{\mathbf{x}_{n}^{2}F'(\mathbf{x}_{n})}\right]^{2}\mathbf{x}_{1}^{2}\mathbf{x}_{2}^{2}\cdots\mathbf{x}_{n}^{2} - A_{1}\left(\frac{1}{\mathbf{x}_{1}} + \dots + \frac{1}{\mathbf{x}_{n}}\right) - A_{0}\left(\frac{1}{\mathbf{x}_{1}} + \dots + \frac{1}{\mathbf{x}_{n}}\right)^{2}.$$
(2.7)

В общем случае производящая функция таких **явных** интегралов построена Вейерштрассом в работе [34], см. также детальное обсуждение этой проблемы в книге [2].

2.2. Построение суперинтегрируемых систем типа Ришело

Применим метод Ришело для классификации суперинтегрируемых систем классической механики.

Определение 1. Интегрируемая система с N степенями свободы является суперинтегрируемой системой типа Ришело, если n-1, $1 < n \leq N$, уравнений движения являются уравнениями Абеля-Ришело (2.3).

Такие суперинтегрируемые системы типа Ришело достаточно просто построить в рамках метода разделения переменных Якоби, см. [18, 32, 33].

Рассмотрим сначала максимально суперинтегрируемые системы Ришело, для которых N = n, т. е. для которых число степеней свободы на единицу больше рода соответствующей гиперэллиптической кривой. В этом случае выбирается одна гиперэллиптическая кривая (2.2)

$$\mu^2 = f(\lambda),$$
 rge $f(\lambda) = A_{2n}\lambda^{2n} + A_{2n-1}\lambda_i^{2n-1} + \dots + A_1\lambda + A_0,$ (2.8)

___ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т. 5, №4, с. 463–478 ____

и вводится *п* произвольных подстановок

$$\lambda_j = v_j(q_j), \qquad \mu_j = u_j(q_j)p_j, \qquad j = 1, \dots, n,$$
 (2.9)

где p и q — канонические переменные $\{p_i, q_i\} = \delta_{ij}$.

Используя *n* экземпляров этой гиперэллиптической кривой и *n*-подстановок, мы получим *n* разделенных уравнений

$$p_j^2 u_j^2(q_j) = A_{2n} v_j(q_j)^{2n} + A_{2n-1} v_j(q_j)_i^{2n-1} + \dots + A_1 v_j(q_j) + A_0, \qquad j = 1, \dots, n, \quad (2.10)$$

где 2n + 1 коэффициентов A_{2n}, \ldots, A_0 — линейные функции от n интегралов движения H_1, \ldots, H_n и 2n + 1 произвольных параметров $\alpha_0, \ldots, \alpha_{2n+1}$.

Разрешая эти разделенные уравнения относительно H_k , мы получим функционально независимые интегралы движения типа Штеккеля

$$H_k = \sum_{j=1}^n (S^{-1})_{jk} \left(p_j^2 + U_j(q_j) \right), \qquad k = 1, \dots, n = N,$$
(2.11)

где $U_j(q_j)$ — так называемые штеккелевские потенциалы и S — матрица Штеккеля [29].

Если H_1 — функция Гамильтона, то решения уравнений движения $q_j(t, \alpha_1, \ldots, \alpha_n)$ находятся из уравнений Якоби

$$\sum_{j=1}^{n} \int \frac{S_{1j}(q_j) dq_j}{\sqrt{\sum_{k=1}^{n} \alpha_k S_{1j}(q_j) - U_j(q_j)}} = \beta_1 - t$$
(2.12)

И

$$\sum_{j=1}^{n} \int \frac{S_{ij}(q_j) dq_j}{\sqrt{\sum_{k=1}^{n} \alpha_k S_{kj}(q_j) - U_j(q_j)}} = \beta_i, \qquad i = 2, \dots, n,$$
(2.13)

где t — переменная времени, соответствующая функции Гамильтона H_1 . В дифференциальной форме эти уравнения, согласно Якоби [13], являются уравнениями Абеля (1.1) и нахождение решений уравнений движения сводится к обращению Якоби отображения Абеля.

Для того чтобы использовать рассмотренные выше результаты Ришело для уравнений Абеля, нам придется наложить ограничения на элементы матрицы Штеккеля $S_{kj}(q_j)$, что приведет к условиям на коэффициенты A_k [18, 32].

В частности, если сравнить n-1 уравнение (2.3) и уравнения (2.13) при $\lambda = x$, окажется, что матрица Штеккеля в переменных λ должна иметь одну из следующих форм, отличающихся друг от друга только первой строкой:

$$S^{(k)} = \begin{pmatrix} \lambda_1^k & \lambda_2^k & \cdots & \lambda_n^k \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \\ \lambda_1^{n-2} & \lambda_2^{n-2} & \cdots & \lambda_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}, \qquad k = n, n+1, \dots, 2n,$$
(2.14)

так что

$$\mu^{2} = f(\lambda) = \lambda^{k} H_{1} + \lambda^{n-1} H_{n-1} \dots + H_{n-1} \lambda + H_{n} + \sum_{j=0}^{2n} \alpha_{j} \lambda^{j}.$$
 (2.15)

Поскольку *k* — произвольное число от *n* до 2*n*, то мы получаем семейство двойственных систем Штеккеля, связанных с одной гиперэллиптической кривой (2.8) и различными блоками соответствующей матрицы Бриль-Нётер [30, 31].

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463-478 __

ЗАМЕЧАНИЕ 1. Для любых двух двойственных систем с функциями Гамильтона H_1 и \tilde{H}_1 соответствующие матрицы Штеккеля $S^{(k)}$ и $S^{(\tilde{k})}$ отличаются только первой строкой. Эти системы Штеккеля связаны каноническим преобразованием времени $t \to \tilde{t}$:

$$\widetilde{H}_1 = \mathbf{v}(q) H_1, \quad d\widetilde{t} = \mathbf{v}(q) dt, \qquad$$
где $\mathbf{v}(q) = \frac{\det S^{(k)}}{\det S^{(\widetilde{k})}}.$ (2.16)

У таких дуальных систем общие траектории с разной параметризацией по времени [31, 21]. Существование таких систем связано с тем фактом, что отображение Абеля является сюръективным и, в общем случае, инъективным.

ЗАМЕЧАНИЕ 2. Для дуальных систем соответствующие гиперэллиптические кривые (2.15) связаны перестановкой одного из параметров α и функции Гамильтона H_1 , и, следовательно, такие преобразования называются «coupling constant metamorphoses» [7, 19, 31]. Такие преобразования также тесно связаны с взаимообратными, или реверсивными, преобразованиями [1].

Сейчас кратко рассмотрим построение суперинтегрируемых систем типа Ришело, для которых только n-1 уравнение движения из N являются уравнениями Абеля–Ришело. В этом случае к n уравнениям (2.10) необходимо добавить N-n произвольных разделенных уравнений

$$\Phi_m(p_m, q_m, H_1, \dots, H_N) = 0, \qquad n < m \le N.$$

Решая этот полный набор разделенных уравнений относительно интегралов движения H_k , мы получим N функционально независимых интегралов движения (2.11). Как и прежде, уравнения Абеля должны совпасть с уравнениями Ришело (2.3) и, следовательно, блок размера $n \times n$ матрицы Штеккеля размера $N \times N$ должен иметь вид (2.14). Приняв во внимание все эти условия, можно получить полную классификацию суперинтегрируемых систем типа Ришело.

Основная проблема заключается в том, что нам в классической механике необходимо получить функцию Гамильтона H_j от физических переменных x натурального вида или какого-то другого специального вида вместо построенных нами функций Гамильтона (2.11), зависящих от абстрактных переменных разделения q. Согласно [18, 32, 33], условие натуральности функции Гамильтона в физических переменных накладывает дополнительные ограничения на коэффициенты A_j в (2.8) и подстановки (2.9).

Легко заметить, что интегралы движения H_k (2.11) и дополнительные интегралы движения Ришело являются полиномами второй степени по импульсам

$$K_1 = \left[\frac{u_1 p_1}{F'(v_1)} + \dots + \frac{u_n p_n}{F'(v_n)}\right]^2 - A_{2n-1}(v_1 + \dots + v_n) - A_{2n}(v_1 + \dots + v_n)^2$$
(2.17)

И

$$K_{2} = \left[\frac{u_{1}p_{1}}{v_{1}^{2}F'(v_{1})} + \dots + \frac{u_{n}p_{n}}{v_{n}^{2}F'(v_{n})}\right]^{2}v_{1}^{2}v_{2}^{2}\dots v_{n}^{2} - A_{1}\left(\frac{1}{v_{1}} + \dots + \frac{1}{v_{n}}\right) - A_{0}\left(\frac{1}{v_{1}} + \dots + \frac{1}{v_{n}}\right)^{2}.$$
(2.18)

Здесь функции u_i и v_j зависят только от координат.

Таким образом, в случае Ришело все интегралы движения являются полиномами второй степени по импульсам, что позволяет найти суперинтегрируемые системы с гамильтонианом натурального вида на римановых многообразиях постоянной кривизны, используя хорошо изученную теорию ортогональных систем координат и соответствующих тензоров Киллинга [4, 10, 20, 26] на этих многообразиях.

__ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т. 5, №4, с. 463–478 __

3. Системы Ришело, интегрируемые в одной из ортогональных систем координат

Произвольную ортогональную систему координат можно представить в виде прямой суммы некоторых основных систем координат [4, 10, 20, 26]. Мы ограничимся рассмотрением некоторых из таких базисных систем координат в *n*-мерном евклидовом пространстве и сфере.

3.1. Базовые ортогональные системы координат

Определение 2. Эллиптическая система координат $\{q_i\}$ в *N*-мерном евклидовом пространстве \mathbb{E}_N с параметрами $e_1 < e_2 < \cdots < e_N$ определяется уравнением

$$e(\lambda) = 1 + \sum_{k=1}^{N} \frac{x_k^2}{\lambda - e_k} = \frac{\prod_{j=1}^{N} (\lambda - q_j)}{\prod_{i=1}^{N} (\lambda - e_i)}.$$
(3.19)

Здесь уравнение (3.19) следует рассматривать как тождество по отношению к произвольному λ .

Положив два или более параметров e_i равными друг другу, мы получим вырожденную эллиптическую систему координат. При этом эллипсоид станет сфероидом или даже сферой, если все параметры будут равны. Таким образом, у системы появляется вращательная симметрия порядка m, если m + 1 параметр совпадает.

Пример 1. Положив для примера $e_1 = e_2$, получим

$$e(\lambda) = 1 + \frac{r^2}{\lambda - e_1} + \sum_{i=3}^{N} \frac{x_i^2}{\lambda - e_i} = \frac{\prod_{i=1}^{N-1} (\lambda - q_i)}{\prod_{j=1}^{N-1} (\lambda - e_j)}, \qquad r^2 = x_1^2 + x_2^2.$$
(3.20)

Это уравнение определяет эллиптическую систему координат в $\mathbb{E}_{N-1} = \{r, x_3, \cdots, x_N\}$. Для построения ортогональной системы координат $\{q_1, \cdots, q_N\}$ в \mathbb{E}_N можно дополнить радиус r некоторой угловой координатой q_N в плоскости $\{x_1, x_2\}$, например, таким образом:

$$x_1 = r \cos q_N, \qquad x_2 = r \sin q_N, \qquad \partial e \quad r = \sqrt{|res|}_{\lambda = e_1} e(\lambda).$$
 (3.21)

 $\Pi pu \ N = 3$ эти уравнения задают вытянутую сфероидальную систему координат.

При $e_1 = e_2 = \cdots = e_n$ остается одна координата $r = \sqrt{\sum x_i^2}$ и N-1 угловых ортогональных координат вводятся на единичной сфере \mathbb{S}_{N-1} произвольным образом — это могут быть углы Эйлера или какие-либо другие координаты, отличающиеся от них, например отражением осей или поворотом.

Таким образом, при вырождении часть координат определены явно, а часть координат (угловые координаты) определяются достаточно произвольным образом — в книге [20] такие угловые координаты называются **скрытыми** координатами.

Определение 3. Параболическая система координат $\{q_i\}$ в \mathbb{E}_N с параметрами $e_1 < e_2 < \cdots < e_{N-1}$ определяется уравнением

$$e(\lambda) = \lambda - 2x_N - \sum_{k=1}^{N-1} \frac{x_k^2}{\lambda - e_k} = \frac{\prod_{j=1}^N (\lambda - q_j)}{\prod_{i=1}^{N-1} (\lambda - e_i)}.$$
(3.22)

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463–478 <u> </u>

Эти ортогональные системы координат можно также вывести из эллиптической системы координат. Действительно, подставляя

$$x_i = \frac{x'_i}{\sqrt{e_i}}, \qquad i = 1, \dots, N-1, \qquad x_N = \frac{x'_N - e_N}{\sqrt{e_N}}$$

в уравнение (3.19) и устремляя e_N к бесконечности, мы, после сокращения подобных членов, получим параболическую систему координат.

В параболической системе координат вырождения рассматриваются аналогично вырождениям в эллиптической системе координат.

Пример 2. $\Pi pu e_1 = e_2$ получаем

$$e(\lambda) = \lambda - 2x_N - \frac{r^2}{\lambda - e_1} - \sum_{k=3}^{N-1} \frac{x_k^2}{\lambda - e_k} = \frac{\prod_{j=1}^{N-1} (\lambda - q_j)}{\prod_{i=1}^{N-2} (\lambda - e_i)}, \qquad r^2 = x_1^2 + x_2^2.$$
(3.23)

Как и ранее, для построения ортогональной системы координат $\{q_1, \dots, q_n\}$ в \mathbb{E}_N необходимо к радиусу r добавить скрытую переменную, например угловую координату q_N в плоскости $\{x_1, x_2\}$, заданную уравнением (3.21). При N = 3 мы таким образом получим так называемые параболоидальные координаты.

Определение 4. Эллиптическая система координат $\{q_i\}$ на сфере \mathbb{S}_N с параметрами $e_1 < e_2 < \cdots < e_{N+1}$ определяется уравнением

$$e(\lambda) = \sum_{k=1}^{N+1} \frac{x_k^2}{\lambda - e_k} = \frac{\prod_{j=1}^{N} (\lambda - q_j)}{\prod_{i=1}^{N+1} (\lambda - e_i)}.$$
(3.24)

Заметим, что уравнение (3.24) предполагает выполнение условия $\sum_{i=1}^{N+1} x_i^2 = 1$. Подобным образом можно определить эллиптическую систему координат $\{q_i\}$ и на гиперболоиде \mathbb{H}_N , заданном уравнением $x_0^2 - \sum_{i=1}^N x_i^2 = 1$ [20]. Как и в предыдущих примерах, эти координаты можно сделать вырожденными, положив некоторые из параметров e_i равными друг другу.

ЗАМЕЧАНИЕ 3. Существуют алгоритмы [4, 26] и программное обеспечение [17], определяющие для данной функции Гамильтона натурального вида H = T + V на римановом многообразии постоянной кривизны, существуют ли для соответствующего уравнения Гамильтона–Якоби переменные разделения, совпадающие с одной из ортогональных систем координат, и если это так, предъявляющие способ их построения, то есть получения производящей функции $e(\lambda)$.

3.2. Максимально суперинтегрируемые системы типа Ришело

Базисные ортогональные системы координат определяются функцией

$$e(\lambda) = \frac{\prod_{i=1}^{N} (\lambda - q_j)}{\prod_{j=1}^{M} (\lambda - e_j)} = \frac{\phi(\lambda)}{u(\lambda)}, \qquad M = N, N \pm 1,$$
(3.25)

являющейся отношением полиномов

$$\phi(\lambda) = \prod_{i=1}^{N} (\lambda - q_j) \qquad \text{if} \qquad u(\lambda) = \prod_{j=1}^{M} (\lambda - e_j).$$
(3.26)

Максимально суперинтегрируемые системы типа Ришело, допускающие разделение переменных в таких системах координат, можно описать, воспользовавшись следующим утверждением:

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т. 5, №4, с. 463–478 __

Утверждение 1. Если n = N разделенных уравнений имеют вид

$$p_i^2 u(q_i)^2 = \frac{1}{2} \left[u(\lambda) \cdot \left(H_1 \lambda^k + \sum_{i=2}^N H_i \lambda^{n-i} \right) - \alpha(\lambda) \right]_{\lambda = q_i}, \qquad \alpha(\lambda) = \sum_{j=0}^{2N} \alpha_j \lambda^j, \qquad (3.27)$$

где $\alpha(\lambda)$ — произвольный полином, то уравнения движения (2.13) являются уравнениями Абеля-Ришело (2.3).

Если k = n, то соответствующий максимально суперинтегрируемый гамильтониан

$$H_1 = T + V = \sum_{i=1}^N \operatorname{res} \left|_{\lambda = q_i} \frac{1}{e(\lambda)} \cdot p_i^2 - \sum_{i=1}^N \operatorname{res} \right|_{\lambda = q_i} \frac{\alpha(\lambda)}{u^2(\lambda)e(\lambda)}$$

имеет натуральный вид в физических декартовых координатах на пространстве \mathbb{E}_n

$$H_1 = T + V = \frac{1}{2} \sum_{i=1}^{N} p_{x_i}^2 + \sum_{i=0}^{M} \operatorname{res} \bigg|_{\lambda = e_i} \frac{\alpha(\lambda)}{u^2(\lambda) e(\lambda)}.$$
 (3.28)

B последнем выражении мы для краткости ввели дополнительный параметр $e_0 = \infty$.

Если k > n, то $H_1^{(k>n)} = v(x) H_1$, где функция v(x) дается уравнением (2.16).

Легко показать, что эти максимально суперинтегрируемые системы типа Ришело совпадают с полученными другими методами суперинтегрируемыми системами [3, 6, 9, 11, 15, 21, 28]. Так, для эллиптической системы координат в \mathbb{E}_N уравнение (3.28) приводит к потенциалу

$$V = \alpha_{2N}(x_1^2 + \dots + x_n^2) + \sum_{i=1}^N \frac{\gamma_i}{x_i^2}, \qquad \gamma_i = \frac{\alpha(e_i)}{\prod_{j \neq i} (e_i - e_j)^2}$$

Для параболической системы координат в \mathbb{E}_N получается

$$V = \alpha_{2N}(x_1^2 + \dots + 4x_N^2) + \gamma_N x_N + \sum_{i=1}^{N-1} \frac{\gamma_i}{x_i^2}, \qquad \gamma_N = 4\alpha_{2N} \sum e_i + 2\alpha_{2N-1}$$

Для эллиптической системы координат на сфере \mathbb{S}_N или на гиперболоиде \mathbb{H}_N получаем

$$V = \sum_{i=1}^{N+1} \frac{\gamma_i}{x_i^2}, \qquad \gamma_i = \frac{\alpha(e_i)}{\prod_{j \neq i} (e_i - e_j)^2}.$$

Для того чтобы сравнить трудоемкость вычислений в различных методах, мы приведем несколько примеров.

Пример 3. Рассмотрим параболические координаты (q_1, q_2, q_3) , заданные уравнением

$$e(\lambda) = \lambda - 2x_3 - \frac{x_1^2}{\lambda - e_1} - \frac{x_2^2}{\lambda - e_2} = \frac{(\lambda - q_1)(\lambda - q_2)(\lambda - q_3)}{(\lambda - e_1)(\lambda - e_2)},$$

соответствующие импульсы равны

$$p_i = \frac{x_1 p_{x_1}}{2(q_i - e_1)} + \frac{x_2 p_{x_2}}{2(q_i - e_2)} + \frac{p_{x_3}}{2}, \qquad i = 1, \dots, 3.$$

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463-478 _

В этом случае разделенные уравнения (3.27)-(3.33) имеют вид

$$p_i^2(q_i - e_1)^2(q_i - e_2)^2 = \frac{1}{2} \Big[(H_1\lambda^2 + H_2\lambda + H_3)(\lambda - e_1)(\lambda - e_2) - \alpha(\lambda) \Big]_{\lambda = q_i}, \qquad i = 1, \dots, 3.$$
(3.29)

Решая эти уравнения относительно H_k , получим интегралы движения и функцию Гамильтона

$$H_1 = \frac{p_{x_1} + p_{x_2} + p_{x_3}}{2} + \alpha_6(x_1^2 + x_2^2 + 4x_3^2) + \gamma_3 x_3 + \frac{\gamma_1}{x_1^2} + \frac{\gamma_2}{x_2^2} + const.$$
(3.30)

Это максимально суперинтегрируемый гамильтониан со штеккелевскими интегралами движения H_2, H_3 и двумя дополнительными интегралами движения Ришело $K_{1,2}$ (2.17)-(2.18):

$$K_{1} = \left(\frac{(q_{1}-e_{1})(q_{1}-e_{2})p_{1}}{(q_{1}-q_{2})(q_{1}-q_{3})} + \frac{(q_{2}-e_{1})(q_{2}-e_{2})p_{2}}{(q_{2}-q_{1})(q_{2}-q_{3})} + \frac{(q_{3}-e_{1})(q_{3}-e_{2})p_{3}}{(q_{3}-q_{1})(q_{3}-q_{2})}\right)^{2} + \frac{\alpha_{5}}{2}(q_{1}+q_{2}+q_{3}) + \frac{\alpha_{6}}{2}(q_{1}+q_{2}+q_{3})^{2},$$

$$(3.31)$$

$$K_{2} = \left(\frac{(q_{1}-e_{1})(q_{1}-e_{2})p_{1}}{(q_{1}-q_{2})(q_{1}-q_{3})q_{1}^{2}} + \frac{(q_{2}-e_{1})(q_{2}-e_{2})p_{2}}{(q_{2}-q_{1})(q_{2}-q_{3})q_{2}^{2}} + \frac{(q_{3}-e_{1})(q_{3}-e_{2})p_{3}}{(q_{3}-q_{1})(q_{3}-q_{2})q_{3}^{2}}\right)^{2} q_{1}^{2}q_{2}^{2}q_{3}^{2} + \frac{H_{3}e_{1} + (H_{3}-H_{2}e_{1})e_{2}}{2} \left(\frac{1}{q_{1}} + \frac{1}{q_{2}} + \frac{1}{q_{3}}\right) - \frac{e_{1}e_{2}H_{3}}{2} \left(\frac{1}{q_{1}} + \frac{1}{q_{2}} + \frac{1}{q_{3}}\right)^{2}.$$

В физических переменных (x, p_x) эти интегралы имеют достаточно сложный вид и их построение в других методах занимает достаточно много времени.

Несложно показать, что интегралы H_1, H_2, H_3 и K_1, K_2 функционально независимы. Конечно, все эти интегралы движения могут быть также получены и в рамках теории Вейерштрасса [34].

Пример 4. Рассмотрим двойственную систему Штеккеля и положим k = n + 1в матрице Штеккеля (2.14) из предыдущего примера. Это будет означать перестановку одного из коэффициентов и гамильтониана в разделенных уравнениях (3.29)

$$p_i^2 (q_i - e_1)^2 (q_i - e_2)^2 = \frac{1}{2} \Big[(\widetilde{H}_1 \lambda^3 + \widetilde{H}_2 \lambda + \widetilde{H}_3) (\lambda - e_1) (\lambda - e_2) - \alpha(\lambda) \Big]_{\lambda = q_i}, \qquad i = 1, \dots, 3.$$

Решая эти уравнения, мы получим суперинтегрируемую систему с гамильтонианом

$$\widetilde{H}_1 = \mathbf{v}(q) H_1 = \frac{1}{2x_3 + e_1 + e_2} H_1,$$

где H_1 задан формулой (3.30). Заметим, что такое каноническое преобразование времени существенно меняет вид дополнительных интегралов движения $K_{1,2}$ (3.30).

3.3. Суперинтегрируемые системы типа Ришело

Теперь рассмотрим вырожденные системы координат, для которых два или более параметров e_i совпадают друг с другом.

В терминах переменных разделения производящая функция $e(\lambda)$ остается мероморфной функцией с n простыми корнями и $m = n, n \pm 1$ простыми полюсами. Так как для

____ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463–478 __

построения систем Ришело мы используем систему уравнений Абеля–Ришело, то это приводит к ограничению на число корней 1 < n < N функции $e(\lambda)$.

В этом случае для построения суперинтегрируемых систем Ришело с n-1 дополнительными интегралами движения необходимо рассмотреть n разделенных уравнений (3.27)

$$p_i^2 u(q_i)^2 = \frac{1}{2} \left[u(\lambda) \cdot \left(H_1 \lambda^k + \sum_{i=2}^n H_i \lambda^{n-i} \right) - \alpha(\lambda) + \frac{1}{2} \sum_{j=n+1}^N \frac{u(\lambda)}{g_j(\lambda)} H_j \right]_{\lambda = q_i}$$
(3.32)

и N-n разделенных уравнений для скрытых или угловых координат

$$p_j^2 = 2\Big(U_j(q_j) - H_j\Big), \qquad j = n+1, \dots, N.$$
 (3.33)

Здесь полиномы $g_j(\lambda)$ зависят от степени вырождения и определения скрытых координат, см. [4, 20], тогда как $U_j(q_j)$ — произвольные функции этих скрытых (угловых) координат q_j .

Решая эти уравнения относительно интегралов движения H_j , мы получим функцию Гамильтона в том же виде (3.28); все изменение будет в том, что, грубо говоря, коэффициенты полинома $\alpha(\lambda)$ будут зависеть от скрытых координат.

Утверждение 2. В вырожденных эллиптических и параболических координатах суперинтегрируемые потенциалы типа Ришело имеют вид (3.28)

$$V = \sum_{i=0}^{m} \operatorname{res} \bigg|_{\lambda = e_i} \frac{\alpha(\lambda) - U_i}{u^2(\lambda) e(\lambda)}, \qquad e_0 = \infty, \qquad (3.34)$$

где $U_i = 0$ для простых корней e_i исходной функции $(\lambda - e_1) \cdots (\lambda - e_M)$ (3.26) после вырождения $e_k = e_j$. Для вырожденных корней $e_k = e_j$ потенциал U_i является произвольной функцией от соответствующих скрытых координат.

Это позволяет нам классифицировать все суперинтегрируемые системы Ришело, используя известную классификацию ортогональных систем координат [3, 9, 11, 15, 18, 21, 28]. Иными словами, мы можем взять любую из ортогональных систем координат на римановом многообразии постоянной кривизны (например, из книги Калнинса [20]) и построить соответствующий суперинтегрируемый потенциал Ришело по формуле (3.34).

Пример 5. Рассмотрим вытянутую сфероидальную систему координат (q_1, q_2, q_3) , заданную уравнением

$$e(\lambda) = 1 + \frac{x_1^2 + x_2^2}{\lambda - e_1} + \frac{x_3^2}{\lambda - e_3} = \frac{(\lambda - q_1)(\lambda - q_2)}{(\lambda - e_1)(\lambda - e_3)}, \qquad q_3 = \arctan\left(\frac{x_1}{x_2}\right).$$

Соответствующие импульсы имеют вид

$$p_1 = \frac{x_1 p_{x_1} + x_2 p_{x_2}}{2(q_1 - e_1)} + \frac{x_3 p_{x_3}}{2(q_1 - e_3)}, \qquad p_2 = \frac{x_1 p_{x_1} + x_2 p_{x_2}}{2(q_2 - e_1)} + \frac{x_3 p_{x_3}}{2(q_2 - e_3)}, \qquad p_3 = x_2 p_{x_1} - x_1 p_{x_2}.$$

В этом случае $g(\lambda) = (e_3 - e_1)^{-1}(\lambda - e_1)$ и разделенные уравнения (3.32)–(3.33) принимают форму

$$p_i^2(q_i - e_1)^2(q_i - e_3)^2 = \frac{1}{2} \left[(H_1\lambda + H_2)(\lambda - e_1)(\lambda - e_2) - \alpha(\lambda) + \frac{(\lambda - e_3)(e_3 - e_1)H_3}{2} \right]_{\lambda = q_i},$$

$$p_3 = 2\left(U\left(q_3\right) - H_3\right),$$

где $\alpha(\lambda) = \alpha_4 \lambda^4 + \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0 - произвольный полином четвертого порядка.$

_ НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463-478_

Решая эти уравнения относительно H_k , получим интегралы движения и функцию Гамильтона

$$H_1 = \frac{p_{x_1} + p_{x_2} + p_{x_3}}{2} + \alpha_4 (x_1^2 + x_2^2 + x_3^2) + \frac{\gamma_1 - U\left(\frac{x_1}{x_2}\right)}{x_1^2 + x_2^2} + \frac{\gamma_3}{x_3^2} - 2\alpha_4 (e_3 + e_1) - \alpha_3,$$

где

$$\gamma_{1,3} = \frac{\alpha(e_{1,3})}{(e_1 - e_3)^2}.$$

Это суперинтегрируемый гамильтониан с интегралами движения Штеккеля H_2, H_3 и дополнительным интегралом движения Ришело K_1 (2.17), имеющим вид

$$K_1 = \left(\frac{(q_1 - e_1)(q_1 - e_3)p_1}{q_1 - q_2} + \frac{(q_2 - e_1)(q_2 - e_3)p_2}{q_2 - q_1}\right)^2 - \frac{(H_1 - \alpha_3)(q_1 + q_2)}{2} + \frac{\alpha_4(q_1 + q_2)^2}{2}.$$

B физических переменных (x, p_x) этот интеграл движения равен

$$K_{1} = \frac{(x_{1}p_{x_{1}} + x_{2}p_{x_{2}} + x_{3}p_{x_{3}})^{2}}{4} + \frac{e_{1} + e_{3} - x_{1}^{2} - x_{2}^{2} - x_{3}^{2}}{2} \Big(\alpha_{4}(e_{1} + e_{3} - x_{1}^{2} - x_{2}^{2} - x_{3}^{2}) + \alpha_{3} - H_{1}\Big).$$

Второй интеграл Ришело К2 (2.18) имеет вид

$$K_2 = \left(\frac{(q_1 - e_1)(q_1 - e_3)p_1}{(q_1 - q_2)q_1^2} + \frac{(q_2 - e_1)(q_2 - e_3)p_2}{(q_2 - q_1)q_2^2}\right)^2 q_1^2 q_2^2 - A_1\left(\frac{1}{q_1} + \frac{1}{q_2}\right) - A_0\left(\frac{1}{q_1} + \frac{1}{q_2}\right),$$

где

$$A_{1} = \frac{1}{2} \left(e_{1}e_{3}H_{1} - (e_{1} + e_{3})H_{2} + (e_{1} - e_{3})H_{3} - \alpha_{1} \right), \qquad A_{0} = \frac{1}{2} \left(e_{1}e_{3}H_{2} - e_{3}(e_{1} - e_{3})H_{3} - \alpha_{0} \right).$$

Легко проверить, что при подстановке H_1, \ldots, H_3 в K_2 мы получим $K_1 = K_2$, поскольку в этом случае есть только одно уравнение Абеля-Ришело, так как n - 1 = 1 и один функционально независимый дополнительный интеграл движения. Это означает, что гамильтониан H_1 в \mathbb{E}_3 не будет максимально суперинтегрируемым и траектории движения будут просто ограниченными, а не замкнутыми [22].

Пример 6. Рассмотрим параболоидальные координаты (q_1, q_2, q_3) , заданные уравнением

$$e(\lambda) = \lambda - 2x_3 - \frac{x_1^2 + x_2^2}{\lambda - e_1} = \frac{(\lambda - q_1)(\lambda - q_2)}{\lambda - e_1}, \qquad q_3 = \arctan\left(\frac{x_1}{x_2}\right),$$

при этом соответствующие импульсы имеют вид

$$p_1 = \frac{x_1 p_{x_1} + x_2 p_{x_2}}{2(q_1 - e_1)} + \frac{p_{x_3}}{2}, \qquad p_2 = \frac{x_1 p_{x_1} + x_2 p_{x_2}}{2(q_2 - e_1)} + \frac{p_{x_3}}{2}, \qquad p_3 = x_2 p_{x_1} - x_1 p_{x_2}.$$

B этом случае $g(\lambda) = (\lambda - e_1)$ и разделенные уравнения (3.32)–(3.33) равны

$$p_{1,2}^2(q_{1,2}-e_1)^2 = \frac{1}{2} \left[(H_1\lambda + H_2)(\lambda - e_1) - \alpha(\lambda) + \frac{H_3}{2} \right]_{\lambda = q_{1,2}},$$
$$p_3^2 = 2(U(q_3) - H_3),$$

где $\alpha(\lambda) = \alpha_4 \lambda^4 + \alpha_3 \lambda^3 + \alpha_2 \lambda^2 + \alpha_1 \lambda + \alpha_0$. Решая эти уравнения относительно H_k , мы получим интегралы движения и функцию Гамильтона

$$H_1 = \frac{p_{x_1} + p_{x_2} + p_{x_3}}{2} + \alpha_4 (x_1^2 + x_2^2 + 4x_3^2) + 2(2\alpha_4 e_1 + \alpha_3)x_3 + \frac{\alpha(e_1) - U\left(\frac{x_1}{x_2}\right)}{x_1^2 + x_2^2} - 3\alpha_4 e_1^2 - 2\alpha_3 e_1 - \alpha_2.$$

Это суперинтегрируемый гамильтониан со штеккелевскими интегралами движения H_2, H_3 и дополнительным интегралом движения Ришело K_1 (2.17), имеющим вид

$$K_{1} = \left(\frac{(q_{1}-e_{1})p_{1}}{q_{1}-q_{2}} + \frac{(q_{2}-e_{1})p_{2}}{q_{2}-q_{1}}\right)^{2} + \frac{\alpha_{3}}{2}(q_{1}+q_{2}) + \frac{\alpha_{4}}{2}(q_{1}+q_{2})^{2}$$
$$= \frac{p_{x_{3}}^{2}}{4} + 2\alpha_{4}x_{3}^{2} + (2\alpha_{4}e_{1}+\alpha_{3})x_{3} + \frac{e_{1}(\alpha_{4}e_{1}+\alpha_{3})}{2}.$$
(3.35)

Как и в предыдущем примере, здесь $K_1 = K_2$ (2.17)-(2.18).

Пример 7. Рассмотрим вырожденную эллиптическую систему координат на сфере \mathbb{S}_3 в \mathbb{E}_4 , так что координаты (q_1,q_2,q_3) заданы уравнением

$$e(\lambda) = \frac{x_1^2 + x_2^2}{\lambda - e_1} + \frac{x_3^2}{\lambda - e_3} + \frac{x_4^2}{\lambda - e_4} = \frac{(\lambda - q_1)(\lambda - q_2)}{(\lambda - e_1)(\lambda - e_3)(\lambda - e_4)}, \qquad q_3 = \arctan\left(\frac{x_1}{x_2}\right).$$

Это означает, что радиус сферы равен $R = \sum_{i=1}^{4} x_i^2 = 1$. В этом случае $g(\lambda) = (e_3 - e_1)^{-1} (e_1 - e_4)^{-1} (\lambda - e_1)$ и пара разделенных уравнений равна

$$p_i^2 (q_i - e_1)^2 (q_i - e_3)^2 (q_i - e_4)^2 = \frac{1}{2} \left[(H_1 \lambda + H_2) (\lambda - e_1) (\lambda - e_3) (\lambda - e_4) - \alpha(\lambda) + (e_3 - e_1) (e_1 - e_4) (\lambda - e_3) (\lambda - e_4) H_3 \right]_{\lambda = q_{1,2}}, \quad (3.36)$$

где $lpha(\lambda)$ — полином четвертой степени с произвольными коэффициентами, а третье разделенное уравнение для скрытой переменной имеет вид

$$p_3^2 = 2(U(q_3) - H_3).$$

Pewas разделенные уравнения относительно H_k , мы получим интегралы движения и функцию Гамильтона

$$H_1 = \frac{1}{2} \left(\sum_{i=1}^4 x_i^2 \cdot \sum_{i=1}^4 p_i^2 - \left(\sum_{i=1}^4 x_i p_i \right)^2 \right) + \frac{\gamma_1 + U\left(\frac{x_1}{x_2}\right)}{x_1^2 + x_2^2} + \frac{\gamma_3}{x_3^3} + \frac{\gamma_4}{x_4^2} - \frac{\alpha_4}{R}, \qquad \gamma_i = \frac{\alpha(e_i)}{\prod_{j \neq i} (e_i - e_j)^2}.$$

Эта суперинтегрируемая функция Гамильтона, и дополнительный интеграл Ришело име $em \ виd$

$$K_{1} = \left(\frac{(q_{1} - e_{1})(q_{1} - e_{3})(q_{1} - e_{4})p_{1}}{q_{1} - q_{2}} + \frac{(q_{2} - e_{1})(q_{2} - e_{3})(q_{2} - e_{4})p_{2}}{q_{2} - q_{1}}\right)^{2} + \frac{(e_{1} + e_{3} + e_{4})H_{1} + \alpha_{3} - H_{2}}{2}\left(q_{1} + q_{2}\right) + \frac{\alpha_{4} - H_{1}}{2}\left(q_{1} + q_{2}\right)^{2}.$$
(3.37)

При этом n = 2 и, следовательно, $K_1 = K_2 (2.17) - (2.18)$.

<u>— НЕЛИНЕЙНАЯ ДИНАМИКА, 2009, Т.5, №4, с. 463–478 </u>

В этом случае преобразование времени (2.16) при k = n + 1 приводит к следующему преобразованию пары разделенных уравнений (3.32)–(3.36):

$$p_i^2 u(q_i)^2 = \frac{1}{2} \left[u(\lambda) \cdot \left(H_1 \,\lambda^2 + H_2 \right) - \alpha(\lambda) + \frac{1}{2} \frac{u(\lambda)}{g_3(\lambda)} H_3 \right]_{\lambda = q_i} = \frac{H_1}{2} \,\lambda^5 + \dots \Big|_{\lambda = q_i}$$

В правой части уравнений получается полином степени 2n + 1 по λ и, следовательно, соответствующие два уравнения Абеля больше не являются уравнениями Ришело (2.3). Тем самым, это пример случая, когда преобразование времени сохраняет интегрируемость, но приводит к потере свойства суперинтегрируемости.

4. Заключение

Согласно [18, 32, 33], существует два класса суперинтегрируемых систем, в которых переменные типа угол либо логарифмические, либо эллиптические функции. В обоих случаях использование теорем сложения, являющихся частными случаями теоремы Абеля, позволяет получить дополнительные интегралы движения, являющиеся однозначными функциями на всем фазовом пространстве.

Основная цель этой работы — обсуждение метода Ришело, одного из старейших, но практически не освещенного в современной литературе, подхода к построению и исследованию суперинтегрируемых систем, допускающего разделение переменных в одной из ортогональных систем координат. Конечно, такие *n*-мерные суперинтегрируемые системы могут быть получены и другими известными методами (см. работы [3, 9, 11, 15, 21, 28] и ссылки в них). Тем не менее, мы считаем, что новое определение (3.28), (3.34)

$$V = \sum \operatorname{res} \Big|_{\lambda = e_i} \frac{\alpha(\lambda)}{u^2(\lambda) e(\lambda)}, \qquad u(\lambda) = \prod_{j=1}^M (\lambda - e_j),$$

суперинтегрируемых потенцилов через производящую функцию $e(\lambda)$ системы координат и произвольный полином $\alpha(\lambda)$ может быть полезным в различных приложениях.

Представляет интерес построение квантовых аналогов интегралов движения Ришело и исследование алгебры интегралов движения в терминах алгебраической геометрии. Другим направлением продолжения исследований является классификация суперинтегрируемых систем Ришело на пространствах Дарбу.

Список литературы

- Abenda S. Reciprocal transformations and local Hamiltonian structures of hydrodynamic type systems // J. Phys. A, 2009, vol. 42, 095208, 20 p.
- [2] Baker H. F. Abel's theorem and the allied theory including the theory of the theta functions. Cambridge: Cambridge Univ. Press, 1897.
- [3] Ballesteros A., Herranz F. J. Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature // J. Phys. A, 2007, vol. 40, pp. F51-F59.
- [4] Benenti S. Orthogonal separable dynamical systems // Differential geometry and its applications: Proc. of the 5th Intern. Conf. on Differential Geometry and Its Applications (Silesian Univ., Opava, August 24-28, 1992) / O. Kowalski, D. Krupka. Opava, 1993. Vol. 1, pp. 163–184.

Benenti S. Separability on Riemannian manifolds (2004). http://www2.dm.unito.it/~benenti/.

- [5] Bertrand J. Théorème relatif au mouvement d'un point attiré vers un centre fixe // C. R. Acad. Sci. Paris, 1873, vol. 77, pp. 849–853.
- [6] Borisov A.V., Kilin A.A., Mamaev I.S., Multiparticle Systems. The Algebra of Integrals and Integrable Cases // Regular and Chaotic Dynamics, 2009, vol. 14, pp. 18–41.
- Boyer C. P., Kalnins E. G., Miller W. Jr. Stäckel-equivalent integrable Hamiltonian systems // SIAM J. Math. Anal., 1986, vol. 17, pp. 778–797.
- [8] Caley A. An elementary treatise on elliptic functions. London: Constable & Co., 1876.
- [9] Daskaloyannis C., Ypsilantis K. Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold // J. Math. Phys., 2006, vol. 47, 042904.
- [10] Eisenhart L. P. Separable systems of Stäckel // Ann. Math., 1934, vol. 35, pp. 284–305.
- [11] Evans N. W. Superintegrability in classical mechanics // Phys. Rev. A, 1990, vol. 41, pp. 5666–5676.
- [12] Euler L. Institutiones Calculi integralis. Petropoli, 1768. [Эйлер Л. Интегральное исчисление. М., 1956.]
- [13] Jacobi C. G. J. Vorlesungen über Dynamik. Königsberg, 1866.
- [14] Jacobi C. G. J. Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen // J. Reine Angew. Math., 1846, vol. 32, pp. 220–227.
- [15] Friš J., Mandrosov V., Smorodinsky Ya.A., Uhlíř M., Winternitz P. On higher symmetries in quantum mechanics // Phys. Lett., 1965, vol. 16, pp. 354–356.
- [16] Greenhill A. G. The applications of elliptic functions. London: Macmillan, 1892.
- [17] Grigoryev Yu. A., Tsiganov A. V. Symbolic software for separation of variables in the Hamilton-Jacobi equation for the L-systems // Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 413–422.
- [18] Grigoryev Yu. A., Khudobakhshov V. A., Tsiganov A. V. On the Euler superintegrable systems // J. Phys. A, 2009, vol. 42, 075202, 11 p.
- [19] Hietarinta J., Grammaticos B., Dorizzi B., Ramani A. Coupling-constant metamorphosis and duality between integrable Hamiltonian systems // Phys. Rev. Lett., 1984, vol. 53, pp. 1707–1710.
- [20] Kalnins E.G. Separation of variables for Riemannian spaces of constant curvature. Harlow: Longman; New York: Wiley, 1986. (Pitman Monographs and Surveys in Pure and Applied Mathematics. Vol. 28.)

Kalnins E. G., Miller W. Jr. Separation of variables on *n*-dimensional Riemannian manifolds: I. The *n*-sphere S_n and Euclidean *n*-space $R_n //$ J. Math. Phys., 1986, vol. 27, pp. 1721–1736.

- [21] Kalnins E. G., Kress J. M., Miller W. Jr. Second-order superintegrable systems in conformally flat spaces: I, II, III // J. Math. Phys., 2005, vol. 46, 053509, 28 p.; 053510, 15 p.; 103507, 28 p.
- [22] Козлов В. В. Симметрии, топология и резонансы в гамильтоновой механике. Ижевск: Изд-во УдГУ, 1995. 432 с.
- [23] Krazer A. Lehrbuch der Thetafunctionen. Leipzig, 1903; Chelsea Reprint, New York, 1970.
- [24] Lagrange J. L. Théorie des fonctions analytiques. Paris, 1797.
- [25] Nekhoroshev N. N. Action-angle variables and their generalization // Trans. Moscow Math. Soc., 1972, vol. 26, pp. 180–198.
- [26] Rauch-Wojciechowski S., Waksjö C. How to find separation coordinates for the Hamilton-Jacobi equation: A criterion of separability for natural Hamiltonian systems // Math. Phys. Anal. Geom., 2003, vol. 6, pp. 301–348.

H.

- [27] Richelot F. Über die Integration eines merkwürdigen Systems von Differentialgleichungen // J. Reine Angew. Math., 1842, vol. 23, pp. 354–369.
- [28] Rodríguez M. A., Tempesta P., Winternitz P. Reduction of superintegrable systems: The anisotropic harmonic oscillator // Phys. Rev. E, 2008, vol. 78, 046608, 6 p.
- [29] Stäckel P. Über die Integration der Hamilton–Jacobischen Differential Gleichung mittelst Separation der Variabel: Habilitationsschrift. Halle, 1891.
- [30] Tsiganov A. V. The Stäckel systems and algebraic curves // J. Math. Phys., 1999, vol. 40, pp. 279– 298.
- [31] Tsiganov A. V. Duality between integrable Stäckel systems // J. Phys. A, 1999, vol. 32, no. 45, pp. 7965-7982.
- [32] Tsiganov A. V. Addition theorem and the Drach superintegrable systems // J. Phys. A, 2008, vol. 41, no. 33, 335204, 16 p.
- [33] Tsiganov A. V. Leonard Euler: Addition theorems and superintegrable systems // Regul. Chaotic Dyn., 2009, vol. 14, no. 3, pp. 389–406.
- [34] Weierstrass K., Über die geodätischen linien auf dem dreiaxigen ellipsoid, Math. Werke, vol. I, p. 257, Berlin, Mayer and Müller, 1895.