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A. G. Dobryanskii (Moscow). Decaying Solutions of a Certain Class of Linear Equations
(October 18, 1996).

We consider the equation /
y' —z"y=0, (1)

where n > 0 is an integer, 0 < z < +00.
It is known that this equation has solutions y(z) such that

im_y(w) =0 @

moreover, two arbitrary solutions satisfying condition (2) are linearly dependent.

Theorem. A function y(z) is a nontrivial solution of Eq. (1) satisfying condition (2) if and

only if
yO©) == (25) (2204 [r (2209,

where I'(z) is the Euler gamma function.

Note that Eq. (1) cannot be solved in elementary or known special functions. The proof is
performed on the basis of expanding a solution in powers of z and estimates in [1, p. 21].
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On the closed interval 0 < z < 7, we consider the boundary value problem
Uy + €U + (1 + e cos 27)u = ea’uy, + f (u,uy), Uglyo = Uzlpey =0, (1)

where 0 < £ € 1, 7 = (1 4 €d)t, and the positive parameters a and a and a parameter § of an
arbitrary sign are of the order of unity. The Taylor expansion of the function f(u,v) € C* at the
origin contains terms of order > 2. As the phase space [the space of initial conditions (u,u;)] of

problem (1), we take W2(0,7) x W}(0,7) and investigate the existence and stability (in the norm
of this space) of solutions 27-periodic in 7.

It was shown in [1] that the problem under consideration can be reduced to analyzing equilibria
of the so-called quasinormal form of problem (1), which has the form

€ = — (i0°/2) &oo — (1/2 + 0)€ + (i0/4)E + dEIEI®,  Eal,mp = Ealomy = 0, (2)

where d is the complex Lyapunov quantity of the equation obtained from (1) for ¢ = 0, { is a
complex function, and ¢ satisfies the complex-conjugate equation. More precisely, each equilibrium
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A. N. Vetokhin (Moscow). On a Certain Property of the Upper Central Ezponent
(March 31, 2000).

For a given positive integer n, we consider the space .# of systems of the form
i=A(t)r, =ze€R", teRT, (1)

where 4 : Rt — EndR" is a continuous bounded operator function. This space is equipped with
the topology of uniform convergence of coefficients on R*. Recall that the upper central exponent
is given by the formula [1]

m—1

Q(A) = lim Im L > In|X(T(j + 1), T5)),
j=0

T—o0 m—oo mT 4

where X (t, s) is the Cauchy operator of system (1). It was proved in [2] that the Lyapunov upper
central exponent A(-) treated as a function on the space .#* does not belong to the first Baire class.
Therefore, we encounter the problem of finding the minimal function ¢(-) from the first Baire class
satisfying the condition A(A) < ¢(A) for any system (1). This problem is solved in the following
assertion.

Theorem. Let the remainder functional ¢(-) : A, — R belong to the first Baire class on the
space A, and satisfy the inequality A(A) < p(A) < Q(A) for any system (1). Then p(A) = Q(A)
for any system (1).
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V. A. Zaitsev (Izhevsk). On the Control for Lyapunov Characteristic Exponents of a Stationary
System with Observer (March 31, 2000).

We consider the following stationary linear system with observer:
&=Az+Bu, y=C'z, (z,u,y) € R™™, (1)

where A = J; — Y 1 Gny1-i€n€}, Jp = {g,-j}:j=1, Giitp =1, i=1,...,n—p, and g;; = 0 for
j—i#p(0<p<n-—1). The control is constructed in the form v = Vy, which implies the
system © = (A+ BVC*) z.

Definition. System (1) has the property of global controllability of Lyapunov exponents if for any
v =(Y,...,7) € R", there exists a matrix V such that x (A + BVC*,\) = A"y AT by,
where x(A4, )) is the characteristic polynomial of the matrix A.

We construct the matrix G = Y1 ; a;_1J} 1, ap = 1. Let an n x n matrix D have the block form

( g 8>,whereFisan (n—p+1) x p matrix, p € {1,...,n}.

Theorem 1. Let x(A+D,\) = A"+ A" 1+ -+, Thenv; =a;—TrDJ;_,G,i=1,...,n.

Theorem 2. Let C*e;ejB = 0 for all 1 < j < i < n. System (1) has the property of global
controllability of Lyapunov exponents if and only if C*J;_1GB, i = 1,...,n, are linearly independent
matrices. In this case, the matriz V reducing the characteristic polynomial of the matriz A+BVQ*
to a predefined polynomial A\ +y A"t + -+, has the form V = [vec“1 (P (P"P)—1 (a— 7))] ,
where P = [vecC*JyGB,...,vecC*J,_1GB] is an mk X n matriz, a = (ay,...,a,) € R", and
vec H is the operator “extracting” the matriz H by rows in a vector column.

DIFFERENTIAL EQUATIONS Vol. 36 No.6 2000


asia
Note
V.A. Zaitsev. On the Control for Lyapunov Characteristic Exponents of a Stationary System with Observer // Differential equations. 2000. Vol. 36, No 6, pp. 954--955


SEMINAR ON QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS 955

Example. Let us consider the following linear nth-order equation with an observer:

2™ 4 a2 4 a2V gz

= Bt ™ + Bpy1, 10" PV e 4 Bartg + -+ Bprull P @)
+..-+ﬁnmum7 zeR, ].SpS'n,,
p=cnzt 2PN L me=cnz e+ ez, 3)

u = (1,...,uUm) € R™, y = (y1,...,yx) € R*. Let u = Vy. On the basis of system (2), (3),
we construct an n X n matrix A, an n x m matrix K = {8;;} in which the first p — 1 rows are
zero, and an n x k matrix C' = {c;;} in which the last n — p rows are zero. Then system (2), (3)
with an observer is equivalent to the matrix system (1) with the matrix B = G~'K, where the
correspondence is given by the relation x; = z. The assumptions of Theorem 2 are valid. Therefore,
if C*J;i 1K, i = 1,...,n, are linearly independent matrices, then for any v = (v,...,7.) € R"

the control V = [vec“1 (P (P*P)"! (a - 'y))]*, where P = [vecC*JoK,...,vec C*J,_; K], reduces
system (2), (3) to the equation 2™ + 42D 4 452D ... 4~ 2 =0,

V. 8. Samovol (Moscow). Transformations of Invertible Systems (April 7, 2000).
We consider the problem on the possibility to reduce a real system of ordinary differential
equations .
t=Ar+F(z), ||F(z)ll = o(llz|), (1)

of the class C* in a neighborhood of a nondegenerate saddle singular point of the space R™ with
the use of a nondegenerate invertible diffeomorphism

z = H(y) (2)
of class C* (k > 1) either to the normal form
y = P(y) 3)
(the local C*-normalization), where P(y) is a polynomial consisting of resonance terms, or to the
linear form
y=Ay (4)

(the local C*-linearization).

It is of interest to consider the case in which system (1) is invertible, i.e., there exists a nonde-
generate matrix B such that

AB=-BA, F(Bz)=-BF(z).

In this case, B is referred to as the automorphism matrix of system (1). It is important to preserve
the invertibility under the transformation (2), which is provided by the condition

H(By) = BH(y). ()
It is known that problem of local smooth normalization of system (1) can be solved with the

use of the Sternberg-Chen theorem [1]. A condition imposed on the normal form of system (1) and
sufficient for its local C*-linearization was given in [2] [the condition S(k)].

Theorem 1. If the automorphism matriz B of system (1) satisfies the condition
B™ =F, (6)

where E is the identity matriz and m > 0 is an integer, then for system (1), there exists a trans-
formation (2) satisfying condition (5) and reducing it to the normal form (3).
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