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Consider the linear stationary controlled system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm. (1)

Suppose that all coordinates of the state vector x can be measured. Taking a feedback control
u = Ux, we obtain the closed system

ẋ = (A+BU)x. (2)

The problem of placing the eigenvalues λi(A + BU), i = 1, . . . , n, of system (2) at arbitrary
given points is called the modal control problem. The term “modal control” is due to the fact
that the eigenvalues correspond to components of free motion of the system, sometimes referred
to as modes [1, p. 5]. A similar problem for a nonstationary system (2) is referred to as the
control problem for Lyapunov characteristic exponents. One says that the Lyapunov exponents
of system (2) are globally controllable if, by using some admissible control, one can bring them to
arbitrary given points in R; the exponents are said to be locally controllable if, by using small-norm
controls, one can bring them to arbitrary given points in a neighborhood of the exponents of the
nonperturbed system (2) with U = 0. We consider only stationary systems. The requirement of
complete controllability of system (1) is known to be a necessary and sufficient condition for the
global controllability of Lyapunov exponents. For example, consider the single-input nth-order
linear differential equation

x(n) + a1x
(n−1) + · · · + anx = u, x ∈ R, u ∈ R. (3)

The controlled system (3) is equivalent to the matrix system (1), where A is a Frobenius matrix and
B = en is the nth column of the identity matrix I. This matrix system is completely controllable,
and the control U = (an − γn, . . . , a1 − γ1) brings the characteristic polynomial of system (3) to an
arbitrary given form p(λ) =

∑n

i=0 γiλ
n−i (γ0 = 1). Accordingly, the control

u = (a1 − γ1) x(n−1) + · · ·+ (an − γn) x (4)

brings Eq. (3) to an equation with given coefficients γi and provides the desired asymptotics of
solutions of system (3), (4).

Consider an nth-order object whose input is a linear combination of m signals and their deriva-
tives of order ≤ n− p. We assume that k distinct linear combinations of the object state z and its
derivatives of order ≤ p− 1 can be measured:

z(n) + a1z
(n−1) + · · · + anz

= bp1v
(n−p)
1 + bp+1,1v

(n−p−1)
1 + · · ·+ bn1v1 + · · ·+ bpmv

(n−p)
m + · · ·+ bnmvm, (5)

z ∈ R, 1 ≤ p ≤ n,
yi = c1iz + · · ·+ cpiz

(p−1), i = 1, . . . , k, (6)

where v = col (v1, . . . , vm) ∈ Rm is the control vector and y = col (y1, . . . , yk) ∈ Rk is the output
vector. The modal control problem is the problem of constructing an incomplete feedback control
v = Uy that brings system (5), (6) to a closed system

z(n) + γ1z
(n−1) + · · · + γnz = 0 (7)
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with given coefficients. Such a control was constructed in [1, p. 36] for a completely controllable,
completely observable object (5), (6) for the case in which m+ k− 1 ≥ n, i.e., the total number of
input and output signals exceeds the dimension of the object. (This case is rather trivial.) In the
present paper, we obtain a necessary and sufficient condition for the existence of a modal control
of system (5), (6) with incomplete feedback v = Uy.

On the basis of system (5), (6), we construct matrices B ∈ M(n,m) and C ∈ M(n, k) with
entries bij ≡ 0, i = 1, . . . , p − 1, j = 1, . . . ,m, and cij ≡ 0, i = p + 1, . . . , n, j = 1, . . . , k, where
M(n, k) is the space of n× k matrices. Let J0 = I ∈M(n, n), and let J1 ∈M(n, n) be the matrix
whose entries on the first superdiagonal are equal to unity and whose remaining entries are zero.
We set Jq

.= Jq1 . The asterisk stands for transposition of matrices. (The transpose of a column
vector is a row vector.)

Theorem 1. Let the feedback v = Uy bring system (5), (6) to the closed system (7). Then the
coefficients γi of system (7) satisfy the relations γi = ai − SpC∗Ji−1BU, i = 1, . . . , n.

The proof is based on the following lemma.

Lemma 1. Let Di = C∗JiB, i ∈ {0, . . . , n − 1}, and Di =
{
dirj
}
, r = 1, . . . , k, j = 1, . . . ,m.

Then dirj =
∑n

l=i+1 cl−i,rblj .

Proof. For each i ∈ {0, . . . , n − 1}, we construct the matrix Ji = {αist}
n

s,t=1. Then αis,s+i = 1
for all s = 1, . . . , n − i, and the remaining entries αist are zero. Let Fi = C∗Ji. Then Fi = {f irl},
r = 1, . . . , k, l = 1, . . . , n, where f irl =

∑n

s=1 csrα
i
sl. Since αil−i,l = 1 (if l > i) and the remaining

entries αisl are zero (and all αisl are zero if l ≤ i), it follows that f irl = cl−i,r sgn max{0, l − i}.
Therefore,

dirj =
n∑
l=1

f irlblj =
n∑

l=i+1

cl−i,rblj.

The proof of the lemma is complete.
Proof of Theorem 1. Let us compute the trace of the matrix C∗Ji−1BU . Let Di−1 =

C∗Ji−1B =
{
di−1
rj

}
∈M(k,m) and U = {ujr} ∈M(m,k). Then, by Lemma 1,

SpC∗Ji−1BU = SpDi−1U =
k∑
r=1

m∑
j=1

di−1
rj ujr =

k∑
r=1

m∑
j=1

n∑
l=i

cl+1−i,rbljujr. (8)

Let us substitute the control v = Uy into system (5). We denote the right-hand side of the
resulting relation by ∆. Let us show that the coefficient of z(n−i) on the right-hand side coincides
with (8), which implies the assertion of the theorem. Since vj =

∑k

r=1 ujryr for all j = 1, . . . ,m
and yr =

∑p

s=1 csrz
(s−1) for r = 1, . . . , k, we have

∆ =
m∑
j=1

n∑
l=p

bljv
(n−l)
j =

m∑
j=1

n∑
l=p

blj

(
k∑
r=1

ujryr

)(n−l)

=
m∑
j=1

n∑
l=p

k∑
r=1

bljujr

(
p∑
s=1

csrz
(s−1)

)(n−l)

=
m∑
j=1

n∑
l=p

k∑
r=1

p∑
s=1

bljcsrujrz
(n−l+s−1).

Let i = l − s+ 1. Then i ranges from l − p+ 1 to l. Therefore,

∆ =
k∑
r=1

m∑
j=1

n∑
l=p

l∑
i=l−p+1

bljcl+1−i,rujrz
(n−i).
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Note that if i ranges from 1 to l − p, then cl+1−i,r = 0. Consequently,

∆ =
k∑
r=1

m∑
j=1

n∑
l=p

l∑
i=1

bljcl+1−i,rujrz
(n−i).

Now we note that if l ranges from 1 to p− 1, then blj = 0, whence it follows that

∆ =
k∑
r=1

m∑
j=1

n∑
l=1

l∑
i=1

bljcl+1−i,rujrz
(n−i).

We change the summation order, replacing
∑n

l=1

∑l

i=1 by
∑n

i=1

∑n

l=i; then we obtain

∆ =
k∑
r=1

m∑
j=1

n∑
i=1

n∑
l=i

bljcl+1−i,rujrz
(n−i) =

n∑
i=1

z(n−i)
k∑
r=1

m∑
j=1

n∑
l=i

cl+1−i,rbljujr.

The coefficient of z(n−i) coincides with (8). The proof of the theorem is complete.
Let us now find conditions guaranteeing that system (5), (6) has a modal control. We intro-

duce the mapping vec : M(n,m) → Rnm that unwraps every matrix H = {hij}, i = 1, . . . , n,
j = 1, . . . ,m, into a column vector by the rule

vecH = col (h11, h12, . . . , h1m, . . . , hn1, . . . , hnm) .

Note that Sp (A∗B) = (vecA)∗ · (vecB) for any matrices A,B ∈ M(n,m). We construct the
matrices

C∗J0B, . . . , C∗Jn−1B (9)

and the matrix P = [vecC∗J0B, . . . , vecC∗Jn−1B] ∈M(mk,n). Let a = col (a1, . . . , an) ∈ Rn.

Theorem 2. System (5), (6) has a modal control if and only if the matrices (9) are linearly
independent, and in this case, the feedback matrix U bringing system (5), (6) to the form (7) with
prescribed coefficients is given by (11), where w = vecU∗.

Proof. System (5), (6) has a modal control if and only if, for each γ = col (γ1, . . . , γn) ∈ Rn,
there exists a matrix U ∈M(m,k) such that

γi = ai − SpC∗Ji−1BU = ai − SpUC∗Ji−1B.

This is a system of n equations with mk unknowns {ujr}. It can be rewritten in the vector form

a− P ∗w = γ, (10)

where w = vecU∗. If the matrices (9) are linearly independent, then rankP = n. In this case,
P ∗P is a nondegenerate matrix, system (10) is solvable for any γ, and its solution has the form

w = P (P ∗P )−1 (a− γ). (11)

But if the matrices (9) are linearly dependent, then rankP < n and system (10) has no solution
for the vector γ = a− β, where β 6∈ ImP ∗. The proof of the theorem is complete.

Note that in a system with an incomplete feedback, as well as in a system with a complete
feedback, the possibility of bringing the system to a prescribed equation is independent of the coef-
ficients ai of the equation and only depends on the coefficients blj and csr of the linear combinations
of input and output signals.
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Example. Consider system (5), (6) with n = 6, m = 2, k = 3, zV I = v1 + v′2, y1 = z, y2 = z′′,
and y3 = zIV. For this system, we construct the matrices B and C. One can readily see that the
matrices (9) are linearly independent. Therefore, this system has the modal control v = Uy, where

U =

(
−γ6 −γ4 −γ2

−γ5 −γ3 −γ1

)
.

This example shows that the condition m + k − 1 ≥ n can be weakened for system (5), (6).
For the existence of a modal control, it is necessary that the dimensions m and k satisfy the
condition mk ≥ n. This readily follows from Theorem 2.
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