МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. А.М. ГОРЬКОГО УРАЛЬСКОЕ ОТДЕЛЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК

ПРОБЛЕМЫ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ХИМИИ

Тезисы докладов XXI Российской молодежной научной конференции, посвященной 150-летию со дня рождения академика Н.Д. Зелинского

Екатеринбург, 19 – 23 апреля 2011 года

Екатеринбург Издательство Уральского университета 2011

Конференция проводится при поддержке гранта РФФИ № 11-03-06807-моб_г и компании «ЭЛЕМЕНТ» (г. Екатеринбург) – генерального дистрибьютора SHIMADZU по Уральскому и Сибирскому федеральным округам РФ.

Редакционная коллегия:

И.Е. Анимица, А.А. Вшивков, С.А. Вшивков, Т.В. Терзиян (отв. за вып.), Ю.П. Зайков, В.М. Жуковский, А.Ю. Зуев, В.Н. Кожевников, А.Я. Нейман, Л.К. Неудачина, В.И. Салоутин, А.П. Сафронов, В.Я. Сосновских, А.И. Суворова

Проблемы теоретической и экспериментальной химии: тез. докл. XXI Рос. молодеж. науч. конф., посвящ. 150-летию со дня рожд. академика Н.Д. Зелинского, Екатеринбург, 19 – 23 апр. 2011 г. — Екатеринбург: Изд-во Урал. унта, 2011. – 478 с. ISBN 978-5-7996-0590-2

В сборнике представлены результаты исследований по пяти научным направлениям: органической химии, аналитической химии, термодинамике и структуре неорганических систем, физикохимии полимерных и коллоидных систем, технологии и электрохимии неорганических материалов.

Для специалистов, занимающихся вопросами теоретической и экспериментальной химии, а также студентов, аспирантов и научных сотрудников химических факультетов вузов.

УДК 351

ИССЛЕДОВАНИЕ АГРОХИМИЧЕСКОГО СОСТАВА ПОЧВ УДМУРТСКОЙ РЕСПУБЛИКИ РАЗЛИЧНОГО ГЕНЕЗИСА

Сафронова Е.Б., Дидик М.В. Удмуртский государственный университет 426034, г. Ижевск, ул. Университетская, д. 1.

Исследование рельефа местности и структуры почвенных горизонтов имеет значительную ценность при выборе земельных участков для реализации организационно-хозяйственных возможностей. Поэтому определение базовых агрохимических показателей, на основе которых определяется тип почвы, является важным этапом для составления почвенных карт, позволяющих предварительно наметить площади, пригодные для производственного и сельскохозяйственного возделывания [1,2].

Ключевым этапом исследования почвенных образцов является процесс отбора проб, от качества проведения которого зависит конечный результат. При отборе проб необходимо учитывать задачи, которые ставит перед собой исследователь: проследить стабильность или интенсивность изменения агрохимических показателей во времени, оценить взаимодействие основных компонентов почвы с токсичными веществами, характер истощения почвенных горизонтов в процессе их использования и т.п.

Процесс пробоподготовки почвенных образцов включал в себя удаление механических примесей, высушивание почвенных образцов при комнатной температуре, просеивание через сито с диаметром отверстий 1 мм, приготовление почвенных вытяжек, фильтрование [3].

Определение ряда агрохимических показателей (кислотности, содержания органического вещества, обменного кальция и магния, подвижного фосфора, хлоридов, сульфатов, марганца, гидролитической кислотности, некоторых тяжелых металлов: цинка, меди, свинца и кадмия) осуществлялось в 8 почвенных образцах различного происхождения (городская почва, лесная, почва сельскохозяйственных угодий и огородных массивов) в соответствии с нормативными документами на методики выполнения измерений, действующими на территории Российской Федерации.

Согласно полученным данным, почвенные образцы относятся к дерновым, дерново-подзолистым и супесчаным почвам, преобладающим на территории Удмуртской Республики [4]. Содержание всех определяемых компонентов, за исключением подвижного фосфора, ниже ПДК. Превышение ПДК по P_2O_5 в образцах почвы сельской местности, огородных массивов связано с многолетним внесением фосфорных удобре-

ний. Наибольшее содержание цинка выявлено в образцах городской почвы, что напрямую связано с его широким применением в технике и строительстве.

По результатам проведенных исследований можно рекомендовать данные образцы в качестве матрицы для создания образцов для контроля качества результатов измерений основных агрохимических показателей почв. Дальнейшая работа предполагает создание образцов с аттестованным значением нескольких показателей для использования их в экоаналитических лабораториях различного профиля для контроля качества проводимых химических анализов.

- 1. Дегтев М.И., Стрелков В.В., Гельфенбуйм И.В. Экологический мониторинг. Пермь: Пермский университет, 1995. 225с.
- 2. Другов Ю.С., Родин А.А. Анализ загрязненной почвы и опасных отходов. М.: БИНОМ. Лаборатория знаний, 2007. 424с.
- 3. Карпов Ю.А., Савостин А.П. Методы пробоотбора и пробоподготовки. М.: БИНОМ. Лаборатория знаний, 2003. 243с.
- 4. Пермяков Ф.И. Почвы Удмуртии: повышение их плодородия. Ижевск: Удмуртия, 1972. 224с.

ПРИМЕНЕНИЕ СЫРЬЕВЫХ МАТЕРИАЛОВ ОГНЕУПОРНОЙ ПРОМЫШЛЕННОСТИ В КАЧЕСТВЕ АДСОРБЕНТОВ ДЛЯ УДАЛЕНИЯ ФЕНОЛА ИЗ СТОЧНЫХ ВОЛ

Плешивцева Д.Е., Солдатов А.И. Южно-Уральский государственный университет 454080, г. Челябинск, пр. Ленина, д. 76

Производственные сточные воды огнеупорной промышленности образуются в результате различных технологических процессов изготовления огнеупорных материалов и изделий. В качестве связующего при изготовлении изделий в достаточно часто используется фенолформальдегидная смола. Использование этих смол сопровождается выделением вредных органических веществ. Вредность фенолов состоит в их токсичности и в сильной восстановительной способности.

Целью данной работы является изучить возможность применения различных сырьевых материалов огнеупорной промышленности в качестве адсорбента для удаления фенола из сточных вод.

Идея работы заключается в том, что для каждого материала имеется общая группа центров, присутствующая на всех видах материалов в различной степени, отвечающая за процесс адсорбционного взаимодействия фенола с поверхностью адсорбента. После адсорбции фенола ко-