ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2011, том 47, № 5, с. 486-493

_____i_____]

- НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 620.193+544.7

КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА НАНОКОМПОЗИТОВ α-Fe + Fe₃C + TiC В НЕЙТРАЛЬНЫХ СРЕДАХ

© 2011 г. А. В. Сюгаев¹, С. Ф. Ломаева¹, Н. В. Лялина¹, С. М. Решетников²

¹Физико-технический институт УрО РАН 426000 Ижевск, ул. Кирова, 132 e-mail: uds@pti.udm.ru ²Удмуртский государственный университет 426034 Ижевск, ул. Университетская, 1 e-mail: smr41@mail.ru Поступила в редакцию 28.05.2010 г.

В работе исследованы коррозионно-электрохимические свойства трехфазных нанокристаллических композитов α -Fe + Fe₃C + TiC в боратных растворах с pH 6.3–9.0, в том числе в присутствии NaCl. Установлено, что композиты α -Fe + Fe₃C + TiC обладают повышенной стойкостью при потенциалах активного окисления α -Fe и цементита вследствие образования на поверхности смешанных оксидов xFeO · yTiO₂. Защитные свойства и стойкость к локальной активации пассивных пленок на основе xFeO · yTiO₂ хуже, чем у пассивных пленок Fe₃O₄/γ-Fe₂O₃ (γ-FeOOH) на железе и композитах α -Fe + Fe₃C.

ВВЕДЕНИЕ

В работах [1, 2] исследованы коррозионно-электрохимические свойства в кислых сульфатных растворах двухфазных композитов α-Fe + Fe₃C и трехфазных композитов α -Fe + Fe₃C + TiC, полученных методом механосинтеза с последующим динамическим прессованием в качестве нанокристаллических моделей карбидосталей. Было показано, что кислотостойкость трехфазных композитов α-Fe + + Fe₃C + TiC невелика вследствие высокой активности карбидных включений в реакции восстановления водорода и низкой защитной способности пассивных пленок [2]. Негативное влияние на структуру и защитные свойства пассивных пленок оказывает свсбодный углерод, который накапливается на поверхности при интенсивном растворении композитов α-Fe + Fe₃C + TiC в активной области.

Целью данной работы является изучение влияния структурного состояния на электрохимические свойства нанокристаллических композитов α -Fe + + Fe₃C + TiC в боратных растворах в диапазоне pH 6.3–9.0, в том числе в присутствии хлоридионов, а также выявление роли карбида титана в пассивации и локальной активации композитов.

ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Композиты получены механосинтезом в шаровой планетарной мельнице "Fritsch P-7" с последующим компактированием методом магнитно-импульсного прессования [3—5]. Использовались различные условия синтеза: 1) Смесь порошков железа, титана, графита в соотношении 70 : 15 : 15 ат. %, в среде аргона, время механосинтеза $t_{MC} = 16$ ч; (образец Fe70Ti15C15);

2) Смесь порошков железа и карбида TiC в соотношении 70 : 30 ат. %, в среде аргона, $t_{MC} = 16$ ч; (образец Fe(70)TiC(30));

4) Смесь порошков железа и титана в соотношении 70 : 15 ат. %, в среде толуола, $t_{MC} = 20$ и 32 ч; (образцы Fe70Ti15/тол20 и Fe70Ti15/тол32);

5) Смесь порошков железа и титана в соотношении 70 : 15 ат. %, в среде толуола с добавкой 3% винилтриэтоксисилана, $t_{MC} = 32$ ч; (образец Fe70Ti15/BTЭC).

По данным работ [2–5] композиты находятся в нанокристаллическом состоянии с размером зерна α -Fe от 10 до 15 нм. Параметр решетки железа для большинства образцов находится в диапазоне a = (0.2872-0.2874) нм, что больше, чем параметр решетки чистого железа, и связано с присутствием титана в виде твердого раствора в железе до ~2 ат %. Включения карбидов имеют размеры 20–100 нм и равномерно распределены по поверхности композитов α -Fe+Fe₃C+TiC, количество карбидных фаз указано в табл. 1.

Для интерпретации полученных электрохимических данных исследовались эталонные образцы армко-Fe ($C - 8 \times 10^{-3}$; $S - 5 \times 10^{-3}$; $P - 3 \times 10^{-3}$; $O - 3 \times 10^{-2}$, $Mn - 6 \times 10^{-3}$ мас. %) и цементита, методика получения которого описана в [6].

Исследования методом рентгеновской фотоэлектронной спектроскопии (РФЭС) проводили на спектрометре ЭС-2401 с Mg анодом. Значение энергии связи (E_{cs}) линии С1*s*-электронов в алкильной группе принимали равным 285.0 эВ. Ионное травление поверхности осуществляли ионами Ar⁺ с энергией 1 кВ при токе 15 мкА. В этом режиме ионного травления за 1 мин удаляется поверхностный слой толщиной ~10 Å. Разложение спектров проводили по методике [7].

Поляризационные измерения выполнены в потенциодинамическом режиме на потенциостате IPC-Pro в стандартной электрохимической ячейке ЯСЭ-2 при комнатной температуре в условиях естественной аэрации. В качестве электрода сравнения использовали хлорид-серебряный электрод, вспомогательного - платиновый. Все потенциалы приведены относительно стандартного водородного электрода, токи пересчитаны на видимую площадь поверхности образцов. Образцы изолировались в эпоксидной смоле. Подготовка поверхности перед электрохимическими исследованиями заключалась в зачистке образцов на шлифовальной бумаге и дополнительной шлифовке поверхности порошком Al₂O₃, смоченным дистиллированной водой. Модельными средами служили боратные растворы (0.3 M H₃BO₃ + 5 M NaOH) с pH 6.3; 7.4; 8.3 и 9.0. Для исследования процессов питтингообразования использовали боратный раствор с рН 7.4 с добавками NaCl (10⁻⁴-0.5) М. Растворы готовили из реактивов марки х.ч. на дистиллированной воде.

Образцы выдерживали в модельных растворах около 1 ч, проводили катодную поляризацию 10 мин при –800 мВ, после чего снимали потенциодинамические кривые со скоростью 1 мВ/с. При исследовании локальной активации образцы поляризовали от потенциала коррозии со скоростью 0.5 мВ/с.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Особенности окисления и пассивации композитов α -Fe + Fe₃C + TiC

На рис. 1 представлены анодные кривые композитов α -Fe + Fe₃C + TiC, армко-Fe и Fe₃C в боратном растворе с pH 7.4. Интенсивное растворение ферритной фазы протекает при потенциалах –300 мB, Fe₃C – при $E \sim -100$ мВ. При всех исследованных pH = 6.3–9.0 токи окисления композитов α -Fe + Fe₃C + TiC повышаются с увеличением содержания цементита, что связано с повышенной дефектностью оксидных пленок, формирующихся на включениях Fe₃C [6, 8].

Сопоставим анодные кривые трехфазных α -Fe + + Fe₃C + TiC и двухфазных композитов α -Fe + Fe₃C с близким содержанием цементита (рис. 2, табл. 2). Для композита α -Fe + 27% Fe₃C наблюдаются отчетливые пики последовательного окисления феррита и цементита, а для трехфазного композита с

Таблица 1. Фазовый состав композитов, мас. % (±5%)

образец	α-Fe	TiC	Fe ₃ C
Fe(70)TiC(30)	67	19	14
Fe70Ti15C15	44	20	36
Fe70Ti15/тол20	52	21	27
Fe70Ti15/тол32	30	19	51
Fe70Ti15/BTЭC	22	14	64

тем же содержанием цементита эти пики отсутствуют, и токи растворения в ~5 раз меньше. В области пассивации, наоборот, скорость окисления трехфазного композита выше. Эти особенности свидетельствуют о разном строении оксидных слоев, формирующихся при окислении композитов. Отметим, что с увеличением концентрации цементита разница в анодном поведении трехфазных и двухфазных систем уменьшается (табл. 2).

Для выяснения природы пассивной пленки на α -Fe + Fe₃C + TiC проведены РФЭС-исследования на образцах Fe70Ti15/тол20 и Fe70Ti15/BTЭC, характеризующиеся минимальными и максимальны-

Рис. 1. Анодные кривые армко-Fe (1), цементита (2) и композитов α -Fe + Fe₃C + TiC: 3-7 - Fe70Ti15C15, Fe(70)TiC(30), Fe70Ti15/тол20, Fe70Ti15/тол32 и Fe70Ti15/BTЭC соответственно. Среда – боратный раствор с рН 7.4.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

Рис. 2. Анодные кривые композитов с близким содержанием цементита: α -Fe + 27% Fe₃C (*I*) и α -Fe + 27% Fe₃C + 21% TiC (*2*) в боратном растворе с pH 7.4.

ми анодными токами, для сравнения рассмотрено армко-Fe. Пассивные пленки получены анодной поляризацией при потенциале 500 мВ в боратном растворе с рН 7.4. Спектры представлены на рис. 3, данные по количественному анализу поверхностных слоев представлены в табл. 3.

В C1s-спектрах линия с $E_{cB} \sim 283.0$ эВ соответствует Fe₃C [9]; линия с $E_{cB} \sim 285.0$ эВ — углероду алкильных групп; $E_{cB} > 286.0$ эВ — углероду кислородсодержащих органических групп [10]. O1s-спектры всех образцов независимо от ионного травления одинаковы и состоят из линий от оксидов ($E_{\rm cB} \sim 530.0$ эВ) и гидроксидов ($E_{\rm cB} \sim 531.5$ эВ) [10].

В Fe2p-спектрах линия с $E_{cB} \sim 707.0$ эВ соответствует α -Fe и Fe₃C; $E_{cB} \sim 709.5$ эВ – FeO; $E_{cB} \sim 708.3$ и 710.6 эВ – Fe₃O₄; $E_{cB} \sim 711.0$ эВ – Fe₂O₃ и $E_{cR} \sim 712.0$ эВ – FeOOH. В Fe3*p*-спектрах линия с $E_{cR} \sim 53.0$ эВ соответствует α -Fe и Fe₃C; $E_{cB} \sim 54.9$ эВ – FeO; $E_{cB} \sim 53.9$ и 55.9 эВ – Fe₃O₄; $E_{cB} \sim 55.7$ эВ – Fe₂O₃ и $E_{cB} \sim 56.6$ эВ – FeOOH [9–11]. Fe3*p*-электроны характеризуются большей глубиной выхода по сравнению с Fe2*p*-электронами, что позволяет исследовать более глубоколежащие слои [12].

В Ті2*р*-спектрах линия с $E_{\rm cB} \sim 454.0$ эВ соответствует Ті; $E_{\rm cB} \sim 454.8$ эВ — ТіС; $E_{\rm cB} \sim 458.2$ эВ — смешанным оксидам MeO · ТіО₂; $E_{\rm cB} \sim 459.0$ эВ — ТіО₂ [10]. В В1s-спектре линия с $E_{\rm cB} \sim 191.8$ эВ соответствует производным борной кислоты [10].

На Fe3*p*- и Fe2*p*-спектрах армко-Fe (рис. 3–1) присутствие сигнала неокисленного железа свидетельствует, что толщина пассивной пленки не превышает толщину анализируемого слоя — не более (3–5) нм [12]. Основные составляющие Fe3*p*- и Fe2*p*-спектров можно отнести к Fe₃O₄ и Fe₂O₃, что хорошо согласуется с классическими представлениями о формировании на железе двухслойной пассивной пленке Fe₃O₄/ γ -Fe₂O₃ [13]. C1*s*-спектр армко-Fe является типичным для адсорбированных на поверхности углеводородных соединений.

На Fe2*p*-, Fe3*p*-спектрах пассивной пленки на Fe70Ti15/тол20 (рис. 3–2) не наблюдаются линии от α -Fe и Fe₃C, что свидетельствует о формировании более толстой пассивной пленки, чем в случае с армко-Fe. Наибольший вклад в Fe3*p*-спектр вносит составляющая с $E_{cB} = 54.6$ эВ от Fe(II). Однако, ее положение не типично для эталонных оксидов железа – Fe₃O₄ и FeO. Поскольку основной вклад в Ti2*p*-спектр вносит составляющая с $E_{cB} = 458.2$ эВ, характерная для смешанных оксидов MeO · TiO₂, то можно сделать вывод, что Fe(II) входит в состав оксидов *x*FeO · *y*TiO₂. Присутствие одиночного пика в B1*s*-спектре свидетельствует об адсорбции производных борной кислоты в пассивной пленке ком-

Состав образцов	<i>i</i> _{нπ} (α-Fe)		<i>i</i> _{нп} (Fe ₃ C)		i _{nn}	
	pH 6.3	pH 7.4	pH 6.3	pH 7.4	pH 6.3	pH 7.4
α -Fe + 14%Fe ₃ C + 19%TiC	44	8	30	13	24	11
(α -Fe + 12%Fe ₃ C)	(200)	(100)	(100)	(30)	(5)	(4)
α -Fe+27%Fe ₃ C+21%TiC	73	8	30	10	23	9
(α -Fe+27%Fe ₃ C)	(175)	(50)	(190)	(37)	(9)	(4)
α -Fe+51%Fe ₃ C+19%TiC	81	62	122	71	68	36
(α -Fe+55%Fe ₃ C)	(130)	(270)	(53)	(57)	(18)	(9)

Таблица 2. Плотности тока при потенциалах начала пассивации ($i_{\rm HII}$) α-Fe и Fe₃C и полной пассивации ($i_{\rm HII}$) для композитов α-Fe + Fe₃C + TiC и α-Fe + Fe₃C в боратных растворах с разными pH; мкА/см² (±5%)

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

488

Рис. 3. РФЭ-спектры пассивных пленок армко-Fe (1), композитов Fe70Ti15/тол20 (2, 2') и Fe70Ti15/BTЭС (3, 3'). Ионное травление: 1, 2, 3 – 1 мин; 2', 3' – 20 мин.

позита, которые исчезают после ионного травления. После ионного травления (рис. 3–2', табл. 3) также уменышается количество кислорода, возрастает содержание углерода, железа и титана. В Fe3*p*- и Fe2*p*-спектрах после ионного травления преобладают линии от α -Fe и Fe₃C, в Cls-спектрах появляется интенсивная линия 283.0 эВ от Fe₃C, в Ti2p-спектре возрастает линия от TiC, что свидетельствует о практически полном удалении пассивной пленки. Отношение Fe/Ti до и после ионного травления соответ-

Таблица 3. Состав поверхностного слоя пассивных пленок на армко-Fe и композита	х Fe70Ti15/тол20 и	r Fe70Ti15/BTЭC
--	--------------------	-----------------

Образец	Время травления, мин	Содержание элементов, ат. %						
		В	С	0	Fe	Ti	Si	Fe/Ti
Армко-Fe	1	0	25	49	26			
Fe70Ti15/тол20	1	9	19	49	19	4		4.8
	20	0	28	28	36	8		4.5
Fe70Ti15/BTЭC	1	0	39	44	17	Следы	0	
	20	0	29	44	27	Следы	0	

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

ствует исходному составу образца, т.е. не происходит обогащения поверхности железом или титаном в процессе окисления.

В составе пассивной пленки на образце Fe70Ti15/BTЭC кремний не наблюдается, а титан даже после ионного травления присутствует в следовых количествах. Особенностью Fe2*p*- и Fe3*p*-спектров этого образца является повышенная доля гидроксидов (рис. 3–3). После ионного травления увеличиваются интенсивности линий с $E_{cB} = 707.7$ эВ в Fe2*p*-спектре и $E_{cB} = 54.2$ эВ в Fe3*p*-спектре (рис. 3–3) и появляется линия с $E_{cB} = 283.4$ эВ в C1*s*-спектре, которые могут относиться к оксикарбидам железа Fe₃C_{1-x}O_x (x < 1). Оксикарбиды, повидимому, являются промежуточными продуктами анодного окисления цементита:

$$Fe_{3}C+xH_{2}O \rightarrow Fe_{3}C_{1-x}O_{x} + xC+2xH^{+} + 2xe, \quad (1)$$

$$x < l; \quad (1)$$

Количественный анализ свидетельствует о формировании $Fe_3C_{1-x}O_x c x \sim 0.3$. Пассивная пленка на композите Fe70Ti15/BTЭС толще, чем в случае Fe70Ti15/тол20, о чем свидетельствует значительный вклад от оксидов и гидроксидов в Fe2*p*-спектре после ионного травления.

Таким образом, особенностью пассивации композитов α -Fe + Fe₃C + TiC является формирование в поверхностном слое смешанных оксидов xFeO · yTiO₂, что снижает токи в области активного окисления феррита и цементита. С увеличением содержания цементита в композитах доля xFeO · yTiO₂ в пассивных пленках снижается, доля гидроксидов возрастает, что снижает защитные свойства пассивных пленок.

Механизмы защитного действия смешанных оксидов *x*FeO · *y*TiO₂

Рассмотрим возможные механизмы образования xFeO yTiO₂ и их влияние на пассивацию композитов α -Fe + Fe₃C + TiC. Во-первых, смешанные оксиды xFeO $\cdot y$ TiO₂ образуются при первичном окислении ферритной фазы, которая легирована атомами Ti:

Кроме того, они могут формироваться на границах включений TiC, которые покрыты слоем TiO₂[14]:

$$xFe+yTi_2 + xH_2O \rightarrow xFeOyTiO_2 + 2xH^+ + 2xe.$$
 (4)

Смешанные оксиды xFeO $\cdot y$ TiO₂, образующиеся на первом этапе окисления композитов в соответствие с (3) и (4), обладают защитными свойствами, по этой причине на кривых отсутствуют отчетливые пики окисления феррита и цементита.

Во-вторых, пассивация α -Fe + Fe₃C + TiC, как и в случае железа и α -Fe + Fe₃C, обусловлена образованием γ -Fe₂O₃. Однако, в присутствие *x*FeO · *y*TiO₂ меняется реакция, отвечающая за переход композита в состояние устойчивой пассивации. Если для железа и двухфазных композитов полная пассивация происходит вблизи равновесного потенциала реакции [8, 13]:

$$2Fe_{3}O_{4} + H_{2}O \rightarrow 3\gamma - Fe_{2}O_{3} + 2H^{+} + 2e; \qquad (5)$$

$$E_{\rm p} = 580 - 59 \text{ pH} (\text{MB}),$$
 (6)

то для трехфазных композитов возможна реакция с участием TiO_2 и смешанных оксидов $xFeO \cdot yTiO_2$ (предварительно приведем $xFeO \cdot yTiO_2$ к 1 молю FeO):

$$2 \operatorname{FeO} y/x \operatorname{TiO}_2 + H_2 O \rightarrow$$

$$\rightarrow \gamma - \operatorname{Fe}_2 O_3 + 2 y/x \operatorname{TiO}_2 + 2 H^+ + 2e.$$
(7)

Термодинамические оценки для известных x и y [15] показывают, что равновесный потенциал реакции (7) на (200–300) мВ отрицательнее, чем для реакции (5). Следовательно, в присутствии TiO₂ и xFeO · yTiO₂ увеличивается область потенциалов электрохимической стабильности γ -Fe₂O₃, что облегчает пассивацию α -Fe + Fe₃C + TiC по сравнению с железом и композитами α -Fe + Fe₃C.

В рамках второго предположения можно объяснить повышенные значения потенциалов коррозии ($E_{\text{кор}}$) для наиболее стойких композитов Fe70Ti15/тол20 и Fe(70)TiC(30), которые находятся вблизи равновесного потенциала реакции формирования γ -Fe₂O₃:

$$2Fe(OH)_{2} \rightarrow \gamma - Fe_{2}O_{3} + H_{2}O +$$

$$+ 2H^{+} + 2e;$$
(8)

$$E_{\rm p} = 62 - 59 \text{ pH} (\text{MB}). \tag{9}$$

Поскольку в соответствии с уравнением (5) потенциал полной пассивации значительно понижен, то для композитов α -Fe + Fe₃C + TiC справедливо соотношение $E_{\text{кор}} = E_{\text{нп}} = E_{\text{пп}}$, и полная пассивация достигается уже при $E_{\text{кор}}$ образцов. В этом случае должны формироваться пассивные пленки меньшей толщины, чем на железе и композитах α -Fe + + Fe₃C, вследствие отсутствия или малой толщины подслоя магнетита.

Полученные РФЭС данные свидетельствуют о формировании на композитах пассивных пленок большей толщины, чем на армко-Fe. Кроме того, отсутствуют заметные вклады в спектры от γ -Fe₂O₃ и TiO₂, которые должны присутствовать в пассивной пленке в соответствие с уравнением (7). Следо-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

Рис. 4. Анодные кривые армко-Fe (1), цементита (2) и композитов α -Fe + Fe₃C + TiC: 3-7 - Fe(70)TiC(30), Fe70Ti15C15, Fe70Ti15/тол20, Fe70Ti15/тол32 и Fe70Ti15/BTЭC соответственно. Среда – боратный раствор с рН 7.4 с добавкой 10^{-2} M NaCl.

вательно, предположение о смене реакции, отвечающей за электрохимическую стабилизацию γ -Fe₂O₃ менее вероятно, чем непосредственное защитное действие смешанных оксидов *x*FeO · *y*TiO₂.

Локальная активация композитов α -Fe + Fe₃C + TiC

Поляризационные кривые композитов α -Fe + + Fe₃C + TiC, армко-Fe и Fe₃C в растворе с 10^{-2} M NaCl представлены на рис. 4. В присутствие 10^{-2} M NaCl пассивная пленка на армко-Fe и цементите сохраняется. При анодной поляризации оба образца подвергаются локальной активации, причем потенциал локальной активации (E_{na}) у цементита на 300 мВ выше, чем у армко-Fe.

По отношению к NaCl композиты α -Fe + Fe₃C + + TiC можно разбить на 2 группы в зависимости от содержания цементита. Образцы первой группы с содержанием цементита меньше 50% в 10⁻²M растворе NaCl не депассивируются. По величине $E_{\pi a}$

Рис. 5. Анодные кривые композитов с близким содержанием цемситита: α -Fe + 16% Fe₃C (*1*) и α -Fe + 14% Fe₃C + 19% TiC (*2*); α -Fe + 27% Fe₃C (*3*) и α -Fe + 27% Fe₃C + 21% TiC (*4*). Среда – боратный раствор с рН 7.4 с добавкой 10^{-2} M NaCl.

образцы можно расположить в ряд: армко-Fe < < Fe(70)TiC(30) < Fe70Ti15C15 ~ Fe70Ti15/тол20 < < Fe₃C. В этом же ряду растет содержание цементита в образцах.

Вторая группа образцов с содержанием цементита выше 50% под действием 10^{-2} M NaCl депассивируется, что приводит к низким значениям $E_{\text{кор}}$ и появлению активационных пиков при анодной поляризации, которые можно отнести как к окислению цементитной составляющей, так и дополнительному окислению пассивной пленки до γ -FeOOH. При дальнейшей анодной поляризации локальной активации подвергается только образец Fe70Ti15/тол32. Образец Fe70Ti15/BTЭC характеризуется интенсивным анодным пиком, отвечающим формированию оксидного слоя значительной толщины, что предотвращает его локальную активацию.

Сопоставим стойкость к локальной активации пассивных пленок на трехфазных и двухфазных композитах с близким содержанием цементита (рис. 5) [16], пассивные пленки на которых отлича-

• ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

Рис. 6. Анодные кривые армко-Fe (a), цементита (б) и композита Fe70Ti15C15 (в) в боратном растворе с pH 7.4 с добавкой NaCl: I-6-0; 10^{-4} ; 10^{-3} ; 10^{-2} ; 0.1 и 0.5 M соответственно.

ются по химической природе. Для трехфазных композитов $E_{\pi a}$ на (100–200) мВ ниже, следовательно, пассивные пленки *x*FeO · *y*TiO₂ более подвержены хлоридной атаке по сравнению с пассивными пленками Fe₃O₄/γ-Fe₂O₃ (γ-FeOOH) на композитах α -Fe + Fe₃C. Влияние концентрации NaCl на анодные процессы рассмотрим на образце Fe70Ti15C15 в сравнении с армко-Fe и цементитом (рис. 6). Со стороны низких концентраций хлоридов композит Fe70Ti15C15 подвергается локальной активации при той же концентрации, что и цементит – 10^{-2} M

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 47 № 5 2011

492

NaCl, в то время как армко-Fe активируется уже при 10^{-3} M NaCl.

Со стороны высоких концентраций NaCl депассивация армко-Fe происходит в 0.5 M, цементита — в 0.1 M NaCl. Композит Fe70Ti15C15 не подвергается депассивации при (0.1—0.5) M NaCl, что свидетельствует о неполном удалении xFeO · yTiO₂ с поверхности даже в концентрированных хлоридных растворах. Однако, локальная активация образца Fe70Ti15C15 происходит вблизи потенциала коррозии.

Таким образом, стойкость к локальной активации композитов α -Fe + Fe₃C + TiC (10⁻² M NaCl) возрастает с увеличением содержания цементита, но при содержании цементита выше 50 мас. % композиты склонны к депассивации. Стойкость пленок *x*FeO · *y*TiO₂ на композитах α -Fe + Fe₃C + + TiC к локальной активации ниже, чем пленок Fe₃O₄/ γ -Fe₂O₃ (γ -FeOOH) на композитах α -Fe + + Fe₃C.

ЗАКЛЮЧЕНИЕ

В работе исследованы коррозионно-электрохимические свойства трехфазных нанокристаллических композитов α -Fe + Fe₃C + TiC в боратных растворах с pH 6.3–9.0, в том числе в присутствии NaCl.

Установлено, что композиты α -Fe + Fe₃C + TiC обладают повышенной стойкостью при потенциалах активного окисления феррита и цементита вследствие образования на поверхности смешанных оксидов *x*FeO · *y*TiO₂. С увеличением содержания цементита в композитах содержание смешанных оксидов *x*FeO · *y*TiO₂ в пассивном слое уменьшается.

Пассивные пленки на основе $x \text{FeO} \cdot y \text{TiO}_2$ формируются уже на первом этапе окисления композитов α -Fe + Fe₃C + TiC с низким содержанием цементита. Защитные свойства и стойкость к локальной активации пленок $x\text{FeO} \cdot y\text{TiO}_2$ хуже, чем у пассивных пленок $\text{Fe}_3\text{O}_4/\gamma$ -Fe₂O₃ (γ -FeOOH) на железе и композитах α -Fe + Fe₃C.

Работа поддержана ОФН "Физика новых материалов и структур" "Научные основы создания объемных нанокомпозиционных коррозионно-стойких материалов на основе железа с тугоплавкими фазами внедрения"

Авторы выражают благодарность с.н.с. ФТИ УрО РАН Канунниковой О.М. за помощь в проведении РФЭС исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сюгаев А.В., Ломаева С.Ф., Решетников С.М. // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 1. С. 74.
- 2. Сюгаев А.В., Ломаева С.Ф., Лялина Н.В., Решетников С.М. // Физикохимия поверхности и зашита материалов. 2011 Т. 47. № 3 (в печати).
- 3. Ломаева С.Ф., Повстугар И.В., Волков В.А. и др. // Химия в интересах устойчивого развития. 2009. № 6. С. 629.
- 4. Ломаева С.Ф., Маратканова А.Н., Волков В.А. и др. // Химическая физика и мезоскопия. 2010. № 1. С. 120...
- 5. Ломаева С.Ф., Волков В.А., Маратканова А.Н. и др. // Материаловедение. 2010. № 6. С. 58.
- 6. Сюгаев А.В., Ломаева С.Ф., Маратканова А.П. и др. // Физикохимия поверхности и защита материалов. 2009. Т. 45. № 1. С. 84.
- Повстугар В.И., Шаков А.А., Михайлова С.С. и др. // Журн. аналит. химии. 1998. Т. 53. № 8. С. 795.
- 8. *Сюгаев А.В., Ломаева С.Ф., Решетников С.М.* // Защита металлов. 2008. Т. 44. № 1. С. 58.
- 9. Yomoto H., Nagamine Y., Nagahama J., Shimotomai M. // Vacuum. 2002. V. 65. P. 527.
- Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. М.: Химия, 1984. 256 с.
- McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. V. 49. № 11. P. 1521.
- 12. Анализ поверхности методами Оже и рентгеновской фотоэлектронной спектроскопии / Под рел. Бриггса Д., Сиха М.П. М.: Мир, 1987. 600 с.
- 13. Сухотин А.М. Физическая химия пассивирующих пленок на железе. Л.: Химия, 1989. 320 с.
- 14. Котенев В.А., Чукаловская Т.В., Чеботарева П.П. // Защита металлов. 1997. Т. 33. № 2. С. 144.
- Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов. Ч. П. Низкотемпературное окисление. Челябинск: Изд. центр ЧелГУ, 2004. 90 с.
- Сюгаев А.В., Ломаева С.Ф., Решетников С.М. и др. // Физикохимия поверхности и защита материалов. 2008. Т. 44. № 4. С. 395.