ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Коллективная монография под ред. академика РАН С.Н. Васильева

Москва «Машиностроение» 2010

УДК 004.8 ББК 32.813 И 73

Рецензенты:

чл.-кор. РАН, д-р техн. наук, проф. Себряков Г.Г. д-р техн. наук, проф. Красильщиков М.Н.

Интеллектуальные системы управления / под ред. акад. С.Н. Васильева. – М.: Машиностроение, 2010. – 544 с.

И 73 Рассмотрены актуальные проблемы построения интеллектуальных систем управления сложными техническими и организационными объектами. Изложены современные подходы к анализу, синтезу и технической реализации данного класса систем с использованием методов искусственного интеллекта и современных информационных технологий управления и принятия решений.

Для научных работников и специалистов в области создания и эксплуатации интеллектуальных систем управления.

Табл.: 92. Ил.: 350. Библиогр.: 487 назв.

ISBN Nº 978-5-217-03467-3

Научный редактор академик РАН С.Н. Васильев **Редакционная коллегия:**

д-р техн. наук, проф. Р.А. Бадамшин д-р техн. наук, проф. С.С. Валеев д-р техн. наук, проф. В.И. Васильев д-р техн. наук, проф. Х. Вёрн (Германия) д-р техн. наук, проф. Б.М. Готлиб д-р техн. наук, проф. М.Б. Гузаиров д-р техн. наук, проф. Б.Г. Ильясов чл.-кор. РАН, проф. И.А.Каляев д-р техн. наук, проф. В.В. Кульба чл.-кор. РАН, проф. Д.А. Новиков д-р техн. наук, проф. В.Ю. Рутковский чл.-кор. РАН, проф. Е.Д. Теряев

УДК 004.8 ББК 32.813

Монография подготовлена в рамках европейской программы TEMPUS **ISBN № 978-5-217-03467-3** © Издательство «Машиностроение», 2010 © Уфимский государственный авиационный технический университет, 2010

УДК 004

С.Г. МАСЛОВ

Ижевский государственный технический университет

СИСТЕМНЫЙ ПОДХОД К ФОРМИРОВАНИЮ СРЕДЫ ПРОГРАММИРОВАНИЯ

В статье развивается системный подход для формирования среды программирования. В рассматриваемом случае программа (информационный артефакт) является продуктом симбиоза между человеком, компьютером и реальностью, который строится из элементов слоев описаний среды программирования (системы понятий, символов, знаков, ощущений). Особенностью подхода является использование понятий симбиоз, «инвариант», степень свободы и управление. Мы стремимся обеспечить непрерывность технологического процесса преобразования идеи в программу (или в общем случае в ИТ-систему), а также обеспечить поддержку эффективности мышления человека в этом процессе с помощью компьютерных средств и когнитивных знаний.

Ключевые слова: системный подход; среда программирования; симбиоз; ИТ-система; ИТ-сфера; инвариант; степень свободы; управление; внешний и внутренний, естественный и искусственный компьютинг.

ВВЕДЕНИЕ

Современное состояние ИТ-сферы характеризуется явно избыточным разнообразием в создании ИТ-систем, в котором перемешаны языки моделирования, проектирования и программирования, библиотеки модулей и паттернов, приложения и платформы, стили и парадигмы, корпоративные и индивидуальные решения и т.п. Это создает иллюзию оригинальности, гибкости и адекватности применяемых средств, при скрытом дублировании, преобладании формы над содержанием, утрате механизмов эффективного накопления знаний и информации. Естественно, что процент неудачных проектов не уменьшается, например, в США остается на уровне 25%, или приблизительно в 40 млрд. долларов потерь ежегодно [1]. Фактически в ИТсфере и в ее разработке сформировался новый кризис, характеризующийся хаотичностью создания, низкой эффективностью потребления и использования информации, когда при изобилии информации и знаний нет нужных, достоверных и своевременных. Кроме того, сложилась парадоксальная ситуация, когда ИТ-специалисты более всего заняты информатизацией всего и всех что их окружает, и менее всего заняты информатизацией своей собственной профессиональной деятельности, действуя по остаточному принципу и довольствуясь в основном эмпирическим уровнем осознания проблем. Однако ситуация постепенно осознается и меняется. Основные усилия исследователей направляются на выявление фундаментальных основ и принципов в создании ИТ-сферы, которые переносят акцент со статических описаний (например, базы данных) на процессные динамические описания.

Данная работа посвящена выявлению фундамента системных представлений для описания среды программирования в широком смысле, т.е. к

описанию информационных процессов и объектов от возникновения идеи до ее реализации (или «материализации»), а также к квантованию и согласованию обработки информации человеком и компьютером, включая когнитивные представления. Основные усилия направлены на выявление слоев дескриптивно-конструктивного описания ИТсистем.

1. О ПРАКТИКЕ СИСТЕМНОГО ПОДХОДА В ИТ-СФЕРЕ

Системный характер описания и разработки в ИТ-сфере считается настолько естественным, что его часто просто не упоминают. Если обратиться к истории и практике, то в системное русло попадают попытки создания универсальных языков программирования (Алгол-68, Ада), универсальных технологий программирования (R-технология, ESPRIT RAISE, ∑-программирование, ...) и средств проектирования (IDEF, UML,...), разработка профилей, регламентов, служб и сервисов (ITIL) и другие. Очень часто системному анализу подвергается предметная область, для которой создаются программные средства моделирования. В этом случае средства программирования часто уходят на второй план, а основное внимание уделяется математическому инструментарию, позволяющему создавать системные (обобщенные) модели, которые каждый раз конкретизируются под возникающую задачу. Это можно наблюдать в матричном или тензорном анализе, в тензорном методе двойственных сетей [2]. Другим способом реализации наоборот является создание частной модели в рамках некоторого универсального математического пакета (Mathematica, Maple, MathCad, ...), в котором систематизированы средства решения классов математических задач на компьютере. Построение систем на базе конструктивной или комбинаторной логики приводит к доказательному программированию и компьютингу, а также формируют единую фундаментальную основу для описания предметной области и средств программирования [3]. Сейчас очень популярны различные онтологические средства, наиболее часто применяемые для задач организации эффективного поиска и описания различных предметных областей (особенно, в веб-среде), перехода к программированию на основе онтологий [4]. В последнее время в область информационные технологии активно встраиваются знания когнитивных наук (знания о психофизиологических, нейрофизиологических характеристиках человека, знания об уровнях когнитивной организации и регуляции интеллекта). Иногда создаются концепции, охватывающие профессиональную деятельность и формы представления знаний и информации, как например, в s-моделировании [5] или в проекте РАСПАС [6].

Несмотря на такой широкий спектр систематизации, остается ощущение незаконченности, фрагментарности, некоторой односторонности (излишней объективности или субъективности), нет непрерывности технологических процессов. Главное нет резонансного процесса синтеза мышления человека и работы компьютера (синтеза естественного и искусственного компьютинга), нет понимания, нет осознанной глубины знаний, нет гармонии осознанного и неосознанного, «костного и живого», «телесного и бестелесного» миров.

Важная концепция для ИТ-сферы с системной точки зрения формируется на основе LT-языка, которая акцентирует внимание на процессных и инвариантных описаниях, измерениях, и в основе которой лежат правилах и законы физического мира [7].

Таким образом, чтобы получить необходимый импульс развития и сформировать результативную среду программирования, необходимо двигаться в направлении разрешения перечисленных «нет».

2. ПОСТАНОВКА ЗАДАЧИ

Необходимо определить основные контуры среды программирования, которая позволяет:

- обеспечить непрерывный процесс движения информации от идеи до ее «материализации»;
- обеспечить симбиоз человека с естественной и искусственной средой компьютинга;
- повысить эффективность профессиональной дескриптивно-конструктивной деятельности человека в ИТ-сфере;
- сбалансировать эмпирический и теоретический уровни программирования, снижая трудоемкость и повышая качество процесса программирования.

3. МЕТОД СИСТЕМНОГО ОПИСАНИЯ И ИССЛЕДОВАНИЯ

Решение поставленной задачи будем рассматривать в конструктивном стиле, используя явно и неявно группу вопросов и ответов: «что — объект», «кто — субъект», «какой — свойства», «как — правила», «чем — инструмент», «где — пространство», «когда — время», «сколько — ценность (цена)», «почему — причина», «зачем — цель» [7]. Возможные конструктивные переходы (=, →) при преобразовании некоторых исходных объектов в результирующие опишем в виде следующей конструкции [8]:

$$p:(x:X \rightarrow y:Y(x),N(x,y,p)):c$$

где

X – исходная область объектов;

х – исходная точка отправления;

Y(x) — область результата (иногда зависящая от точки отправления);

p — метод или правило, способствующее переходу x:X к Y(x) и $p \in P$;

c — метод или факторы, препятствующие переходу $x:X \ltimes Y(x)$ и $c \in C$;

N — возможные типы неудач перехода.

Можно выделить следующие типы неудач перехода $x:X \ltimes Y(x)$:

- N_A объект вообще не создан или все ресурсы израсходованы;
 - N_B объект создан, но не того качества;
- N_C создан объект требуемого качества, но неэффективным образом;
- ullet N_D создан объект требуемого качества, но система ценностей и потребностей субъекта изменилась

Если под задачей понимать определение неизвестных компонент конструктивного перехода, то фактической средой реализации будет выделенная часть общей среды реализации (Е), которая является организованной совокупностью информации и знаний о X, Y, P, C. Каждый конструктивный переход или его компоненту на метафорическом уровне можно представить в виде ствола дерева (или нейрона), у которого есть корни (из чего он построен или откуда принимает информацию) и крона (где он используется или куда выдает свою информацию).

3.1. Направления взаимодействия субъекта с объектом

Рассмотрим «жизненную» ситуацию (S'), в которой оказывается субъект (Sb) при взаимодействии с воображаемым (im) или реальным (re), искусственным или естественным объектом (Ob), например, IT-системой) в рамках некоторой среды (E). Выделим основные конструктивные переходы в системе знаний (K):

С. Г. Маслов • Системный подход к формированию среды программирования.

Когнитивный: $(Ob \rightarrow K_{Ob})$:

 $K_{HAБЛЮДАТЕЛЬ: Sb}$;

Конструктивный: $(K_E \rightarrow K_{Ob})$:

 $K_{KOHCTPYTOP: Sb}$;

Креативный: $(K_{Sb} \rightarrow Sb)$: $K_{CO3ДАТЕЛЬ: Sb}$;

Конативный: $(K_{Sb} \rightarrow Sb)$: $K_{HABUГАТОР: Sb}$;

Коммуникативный:

 $(K_{Sb,Ob,E} \rightarrow K^{'}_{Sb,Ob,E})$: $K_{COVYACTHUK: Sb};$

Pефлексивный: $(K_{Sb,Ob,E} o Ob, K_{Sb,Ob,E})$:

 $K_{A\Pi A\Pi TOP}$: Sh.

Необходимо заметить, что здесь возможны переходы между реальным и абстрактным мирами. Кроме того, в качестве основного препятствующего фактора часто выступают ресурсы.

3.2. Общая ситуация конструктивной деятельности

Описанные выше направления и компоненты взаимодействия субъекта и объекта конкретизируются в рамках описания общей конструктивной ситуации (S^{II}) в следующую совокупность конструктивных переходов.

Все начинается с формулирования цели (G), которая может быть легко достижима или порождает проблему (несовместимость желаемого и возможного).

Целеполагание: (Киенности, потребности: Е

 $\rightarrow G=K_{Oh}$): $K_{E.Sh.Oh}$;

Проектирование: (G

 $\rightarrow \Pi poekm: K'_{Ob}): K_{E,Ob};$

Планирование: (К ОБЛИНСТРУМЕНТ:Е

 $\rightarrow \Pi$ лан: K''_{Ob}): $K_{Sb,Ob}$;

Реализация: $(K''_{Ob} \rightarrow Ob):C;$

Оценка: $(Ob, G \rightarrow K_{Ob,P}): C;$

Принятие решений:

 $(K_{Ob,P}\&Bepa\&Boля\&$

Ответственность → Решение: K_{Sb}):Sb.

Важно отметить, что хорошее решение есть взаимодействие интуиции, идеализации, формализации и деформализации. Когда этого не хватает, включается вера, воля и осознанная ответственность за принимаемое решение.

3.3. Слои системного описания и уровни управления

Конструктивные переходы ситуаций S^{I} и S^{II} непосредственно к успеху не приведут, если знание о их компонентах будут формироваться хаотическим образом. Нужна такая процедура декомпозиции (анализа), которая предусматривает наиболее естественную интеграцию (синтез). Для этого случая выделяются следующие слои описания системы: морфологический, функциональный, атрибутивный, либернетический и генетический. Генетический и либернетический слои объединяются в процессы управления жизненным циклом системы. Метод включает параметрический, структурный, базисный и рефлексивный уровни управления. Рассмотрим их более подробно с точки зрения среды программирования [9].

Морфологическое описание (М), определяющее состав систем, соответствует синтаксису языка. Однако синтаксис, претендуя на правильно построенные конструкции, часто приводит к «невыполнимым» конструкциям, несовершенство которых проявляется в поведении.

Анализ: $(Ob \rightarrow (x:nepemenhue),$ (е:элементы), (r:связи), (s:структура): M):C;

Функциональное описание (Р), определяющее динамическое поведение и преобразование систем, соответствует различным семантикам, например, денотационной (исчисление конверсии объектов, динамика их агрегирования и детализации), аксиоматической (аксиомы с содержательной точки зрения делятся на постоянные (законы) и переменные (условия), правила вывода), функциональной и другие.

Анализ:
$$(Ob \rightarrow npaвила, npeoбpaзoвания,:P):C;$$

Атрибутивное описание, определяющее качественное и количественное проявление систем (Ас. Aq), соответствует логической семантике, описывающей свойства устройства и поведения систем, в частности, их надежность, защищенность, сложностные и эргономические аспекты, которые могут быть использованы в процессе построения, выбора и эксплуатации систем.

Анализ: (M, $P \rightarrow Ac$, Aq):C;

Либернетическое описание не имеет явного соответствия в языковой деятельности. Оно концентрирует внимание на инвариантных и вариативных, проекционных и интеграционных особенностях конструкций и поведения системы. Важной особенностью такого описания является переход от базовых к обобщенным представлениям (координатам) с помощью программ управления, необходимых и достаточных для достижения целей.

В либернетическом описании важно понятие «степени свободы» (F) как независимой изменчивости в описании системы, действующей в формуле [10]: $\{ csoбoды, oprahusamopы \} \rightarrow ynpasnehue$, в которой организаторы фиксируют, редуцируют и генерируют необходимые и достаточные степени свободы, реализуя некоторые целевые акции и реакции.

Анализ: (M,
$$P \rightarrow F$$
):C;

Генетическое описание, обнаруживая и преодолевая препятствия и противоречия в построении систем, является основой выявления и концентрации опыта в фиксации устойчивых структур и поведения систем (U).

Анализ: (M, P,F,
$$C \rightarrow U$$
): C' .

Если выделены степени свобод, то можно рассмотреть уровни управления. Каждый уровень включает редукторы и генераторы степеней свобод.

Параметрический уровень включает фиксации и регуляции:

$$x_{\alpha} \to const, \quad const \to x_{\alpha},$$
 а также обратную связь (реакции и рефлексы):

$$x_{\alpha} \uparrow \to \downarrow x_{\beta}, \quad x_{\alpha} \downarrow \to \uparrow x_{\beta}$$
 (отрицательная), $x_{\alpha} \uparrow \to \uparrow x_{\beta}, \quad x_{\alpha} \downarrow \to \downarrow x_{\beta}$ (положительная).

Структурный уровень связывает группы переменных, принадлежащие элементам (ξ_{im} , i – номер элемента (e_i), m – номер переменной в элементе) или связям (ζ_{kn} , k – номер связи (r_k), номер переменной в связи). Можно «рубить» $e_n \rightarrow e_i$, e_j или «склеивать» элементы e_i , $e_j \rightarrow e_n$, изменяя состав переменных. Можно добавлять или удалять связи (r_v), вводя синергии и инварианты или освобождая ранее связанные переменные. Интересно, что для достижения цели требуется именно динамический способ изменения активных и пассивных переменных.

Базисный уровень, сохраняя форму, включает изменение характеристик среды реализации (субстанции), например, заменяя механическую среду вычислений на электронную или химическую. Это осуществляется путем изменения базиса переменных:

$$x_i \to y_k$$

или изменение интервалов существования переменных:

$$x_i \in [a,b]_i \rightarrow x_i \in [c,d]_i$$
.

Динамически может меняться точка зрения:

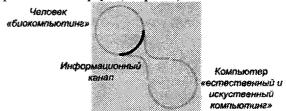
$$u_i = T_{ip}\overline{u}_p, \ u_i \in Ox_i, \ \overline{u}_p \in Az_p$$

или функциональное насыщение (преобразование):

$$H: (F: (u_i \rightarrow u_k): C^I \rightarrow$$

$$G: (u_i \rightarrow u_k): C^{II}): C^{III}$$

Рефлексивный уровень позволяет перевести объекты среды из пассивного состояния в активное, т.е. использовать знание о среде и самих себе, что позволяет организовывать «цепные реакции» для эффективного достижения целей: собственных локальных для объекта и глобальных достигаемых совместно с субъектом.


Примером рефлексии могут служить конструктивные электронные издания, которые активно перестраивают свой материал под решаемую проблему и уровень знаний субъекта.

Важно, что в рамках всех четырех уровней организации степеней свобод отдается приоритет программному управлению, а не простому механизму «стимул – реакция».

3.4. Стратегии компьютинга

Качественное описание систем естественно предполагает активное использование компьютинга, «оживляющего» потоки информации и знаний. В рассматриваемом случае компьютинг является обобщенным процессом, который, в частности, включает вычисления, вывод, поиск, преобразования, навигацию и т.д. Он оперирует качественными и количественными данными.

Идею симбиоза человека с внешней средой компьютинга, реализуемого на основе описываемого метода системного анализа (и синтеза) и законах природы, можно отобразить в виде следующей графической метафоры (см. рис.1.).

Рис. 1. Симбиоз человека со средой естественного и искусственного компьютинга.

В этом случае процессы программирования включают концепции стилей, форм, видов и техник как аспекты программирования (более подробно см. в [9]). Эти аспекты формируются при взаимодействии субъектов (Sb) посредством мира знаков и ощущений (WZ, WS), сенсорного мира (SW) в естественном и искусственном мирах (NR, AR).

С.Г. Маслов • Системный подход к формированию среды программирования.

Атрибуты прог- раммирования	Sb	NR	AR	WS	SW	WZ
Стиль	*	*		*		*
Форма	*		*		*	*
Вид		*	*		*	*
Техника	*		*	*		*

Реальный компьютинг может осуществляться в синхронных (S) и асинхронных (As) режимах, с учетом некоторых условий и без них, сочетание которых порождает ряд стратегий (табл.2.).

Таблица 2 Матрица стратегий компьютинга

Исполнение	Безусл.		Усл.		Смеш.	
Последовательное						
	S	As	S	As	S	As

Параллельное

Конкурентное

Коллаборативное

Антагонистическое

Стратегии компьютинга должны быть дополнены методами дедуктивного и индуктивного синтеза. Кроме того, часто в реальных задачах можно сначала достаточно точно определить условия результата, а затем восстановить процесс его получения. Так, при вычислении с разреженными матрицами удается найти структуры для ненулевых элементов и в операциях над этими матрицами произвести вычисления над этими структурами, сразу получив возможные условия ненулевых результатов. Затем именно по этим условиям вычисляются сами ненулевые значения [11].

3.5. Ошибки, препятствия, противоречия и их преодоление

Редко удается сразу получить качественное решение, если вы решаете достаточно сложную задачу. Ошибки возникают на *стратегическом* уровне, когда плохо осознаются явные и неявные ценности и потребности, на *оперативном и тактическом* уровнях, когда человек тонет в деталях, нарушает границы и интервалы применимости ранее выработанных знаний, преодолевает несогласованности различных уровней описания, часто в условиях дефицита времени. В рамках коллективной и междисциплинарной творческой деятельности человек вынужден преодолевать психологические, культурные, языковые, финансовые, технические, технологические *барьеры*, а также уровни знаний и

их противоречивость. Необходимо единое основание для описания и построения механизмов преодоления перечисленных препятствий.

Таким основанием может служить объединение результатов анализа целей, степеней свобод и уровней управления, которые в простых случаях дают механизмы изменения степеней свобод, т.е. их сокращения или увеличения, их ограничения или генерации и изменения состава. В более сложных случаях осуществляется трансмерный переход из состояния меньшей размерности в состояние большей размерности или переход в новое семантическое пространство на основе эквивалентности решений по ресурсам, а также на основе устойчивых универсальных мер (LT-система [2, 7]).

Главное в разрешении противоречий понять, каких степеней свобод и на каком уровне не хватает или их необходимо устранить, т.е. определить тип противоречия.

Разрешение противоречия можно кратко сформулировать в виде гипотезы конструктивного процесса [8]:

F:
$$(m: (g:G = \{L, I\} \rightarrow C(g)):$$

 $e = \{L', I'\} \rightarrow S(m; e)): R,$

где I – исполнитель - Homo Sapiens,

L – профессиональный язык и «язык природы».

m — метод решения или выявления противоречия в задаче,

e – среда, в рамках которой ищется решение задачи,

 $L^{'}$ – языки либернетики, ресурсов и правил их интерпретации,

I— человеко-машинная система, осуществляющая либернетический переход,

F – запись на языке либернетики,

G – цель (инвариант),

C – противоречие,

R — ресурсы,

S – решение проблемы (баланс).

Попытка достичь цель G в среде e методом mчасто приводит не к решению, а к противоречию C. В этом случае необходимо исследовать пространство степеней свобод F в рамках заданных ресурсов R, чтобы получить решение S. Решение и в этом случае может быть не найдено, но эффективность этого конечного конструктивного процесса строится как на едином основании анализа и синтеза степеней свобод, так и на возможности формирования и управления стратегиями поиска решения на различных уровнях и слоях. В случаях «слабых» противоречий решения часто строятся методами поиска компромисса (в частности, методами оптимизации) или методами простых рекомбинаций. В случаях «сильных» противоречий необходимы творческие методы разрешения противоречий, разнообразные стратегии поиска решений. Эффективность при этом следует из изучения и установления закономерностей, которые потом закладываются в механизмы организаторов либернетического построения систем. Очень важно как можно раньше понять, что выделенных ресурсов недостаточно или что план нужно перестроить.

3.6. Ресурсы и измерители

Ресурсы – это то, что расходуется и может возобновляться при реализации (или исполнении) планов (или описаний), и то, из чего строятся сами системы [8].

Различаются возобновляемые и невозобновляемые, субъективные и объективные ресурсы. В качестве основных ресурсов можно выделить:

- *временной* наиболее ценный невозобновляемый ресурс (особенно для субъекта);
- *пространственный* возобновляемый существенный ресурс;
- вещественный объективный ресурс, может быть аккумулятором и расточителем энергии, носителем информации;
- энергетический наиболее всеобъемлющий, жизненно важный, созидающий и разрушающий, объективный ресурс;
- информационный объективно-субъективный ресурс, мысленных планов и процессов, «следов» взаимодействия, управляющий энергетическими потоками, состоянием и развитием материальной среды, ресурс с минимальным энергопотреблением;
- финансовый наиболее противоречивый, субъективный (относительно-конвенциональный) ресурс, часто «иллюзорный», приводящий к искаженному представлению о действительности, легко перенаправляемый как на созидание (развитие, организацию), так и на разрушение (деградацию, дезорганизацию);
- интеллектуальный организующий (управляющий), анализирующий, синтезирующий, генерирующий формы и связи взаимодействия других ресурсов, наиболее нестабильный ресурс, уровень развития которого сильно зависит от критической массы его в заданной области пространства и времени.

По каждому ресурсу образуется точка эквивалентности, т.е. точка возникновения аналогий или альтернатив в организации живой и неживой материи, а в частном случае, для организации системы знаний как на абстрактном, так и на конкретном уровне. Действуя совместно, они создают узлы перестройки пространства и потоков энергии, вещества и информации, т.е. создают почву для оценки реальности и реализации замыслов в построении систем, с осознанием субъектом сложности, цены и ценности принимаемых решений.

Существенным фактором в системном анализе является возможность сравнивания качественных и количественных характеристик проектируемых систем, наличие эталонов для измерения. Неудачи проектов в ИТ-сфере во многом определяются тем,

что показатели не отражают суть системы, например «количество строк программного текста» или «возврата инвестиций» (ROI). Во многом более эффективный и объективный путь уже найден — это система пространственно-временных LT-размерностей Бартини-Кузнецова [7], которая требует дальнейшей конкретизации. Самое важное, что она позволяет устанавливать границы действия разнородных систем, соразмерять и соизмерять возможности и потребности систем, а также разрабатывать механизмы управления знаниями для устойчивого развития систем.

4. ОБСУЖДЕНИЕ И ПРИЛОЖЕНИЕ РЕЗУЛЬТАТОВ

Рассмотренный выше метод системного описания позволяет строить некоторую систему, прежде всего, в виде многослойной терминологической системы. Для программирования и с когнитивной точки зрения также важна форма и информационные каналы, механизмы компьютинга, в рамках которых формируются образы, знаки и поведение для концентрации наших знаний. Все перечисленные аспекты также проходят путь предложенного системного описания, в результате чего формируется мощная система аналогий, разнообразных, управляемых и творческих действий субъекта, сокращающие ему время для концентрации необходимых знаний, а также целенаправленного процесса поиска препятствий и их устранения.

Практическая апробация метода осуществлена на следующих задачах:

- управление интеллектуальными ресурсами в ИТ-сфере;
- концептуальная классификация программного обеспечения,
- разработка конструктивных электронных изданий (или публикаций) и фонда электронных ресурсов,
- разработка технологии когнитивного, конструктивного и корректирующего чтения,
- анализ терминологии целенаправленной межаники:
- частично, в разработке многоуровневой и мультиязыковой модульной системе программирования: mx mi module-x.

Характерной особенностью стало то, что решения всех этих задач легко увязываются в непрерывную технологию или процесс формирования индивидуальной системы знаний субъекта (или ИИТсферу).

5. БЛАГОДАРНОСТИ

Выражаю искреннюю признательность проф. В.Э. Вольфентагену, проф. А.П. Бельтюкову, проф. В.В. Смолянинову за многочисленные обсуждения различных аспектов рассмотренного подхода.

Работа выполнена при финансовой поддержке РФФИ, грант 08-07-00460-а.

С.Г. Маслов • Системный подход к формированию среды программирования.

выводы

Таким образом, предложенный метод системного описания позволяет:

- 1. Преодолеть ограничения «усеченного системного анализа», используемого при построении онтологий
- 2. Строить описание систем в виде многослойной терминологической системы, которая «оживает» при реализации различных конструктивных переходов, погруженных в стратегии компьютинга.
- 3. Констатировать, что возможности синтеза информационных, когнитивных и нано- технологий во многом зависят от правильно организованного потока информации между человеком, компьютером и создаваемой системой на абстрактном и физическом уровнях, т.е. контекста ситуаций S^I и S^{II} .
- 4. Утверждать, что фундаментальный базис системного построения должен включать в себя ресурсный, либернетический и LT- анализ, потому что они целенаправленно расширяют базу эквивалентных преобразований, дополняя психологические методы преодоления инерции мышления человека в процессе творчества.
- 5. Классифицировать и перейти к более четкому осознанию причин неудач и противоречий, а также перейти к их предупреждению и разрешению.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Макконнелл С.** Профессиональная разработка программного обеспечения. Пер. с англ. СПб.: Символ&Плюс, 2006. 240 с.
- 2. **Кузнецов О.Л.** Итоговый научный отчет за 2008 2009 годы по гранту Президента Российской Федерации для государственной поддержки ведущих научных школ РФ НШ-1269.2008.9 / О.Л. Кузнецов, Б.Е. Большаков, А.Е. Петров, // Дубна, 2009. (http://www.uni-duba.ru/departments/sustainable_development/Portal/science_returns/?id=1554)

- 3. Вольфенгаген В. Э. Аппликативные вычислительные технологии. Готовые решения для инженера, преподавателя, аспиранта, студента / Под ред. к.т.н. Л.Ю. Исмаиловой./ М.: ЗАО «ЮрИнфоР®», 2009. 64 с.
- 4. **Клещев А.С.** Использование онтологий в разработке программного обеспечения //Всерос. конф. «Знания — Онтологии — Теории» с междун.участием 14-16 сентября 2007 г. Новосибирск.: Институт математики им.С.Л. Соболева. Т.1. С.122-130.
- 5. **Ильин В.Д.** Символьное моделирование в человеко-машинной среде: основы концепции / В.Д. Ильин, И.А. Соколов // Информационные технологии и вычислительные системы. 2008. №1. С. 51-60.
- 6. **Нечипоренко А.В.** На рубеже знаниевых технологий //Кентавр, №32. С.8-19. (http://www.circleplus.ru/archive/n/32/2)
- 7. **Большаков Б.Е.** Системный анализ методов управления знаниями в области устойчивого развития / Б.Е. Большаков, Е.Ф.Шамаева // Устойчивое инновационное развитие: проектирование и управление 2009, №4. С. 39-54. (www.rypravlenie.ru)
- 8. **Бельтюков А.П.** Либернетическая парадигма в IT-сфере / А.П. Бельтюков, С.Г. Маслов, О.А. Морозов //Технологии информатизации профессиональной деятельности (в науке, образовании и промышленности): Сб. тр. II Всероссийской науч. конференции с междунар. участием. Часть І. Ижевск.: ООО Информационно-издательский центр «Бон Анца»», 2008. С.37-52.
- 9. **Бельтюков А.П.** Конструктивные механизмы в IT-сфере / А.П. Бельтюков, С.Г. Маслов, О.А. Морозов //Вестник Удмуртского университета. Сер. Математика. Механика. Компьютерные науки. 2009. Вып. 2.- С. 102-109.
- 10. Смолянинов В.В. Либернетика наука о свободах системной организации // Мост. 2000. №1. С. 28-30.
- 11. **Маслов С.Г.** Структурные аспекты моделирования сложных систем //НТИ. Сер.2., Информационные процессы и системы. М.: ВИНИТИ, №3, 1993. С. 7-9.