УДК 517.917

© Т. С. Быкова, Е. Л. Тонков tsbkv@udm.net, eltonkov@udm.ru

АСИМПТОТИЧЕСКАЯ ТЕОРИЯ ЛИНЕЙНЫХ СИСТЕМ С ПОСЛЕДЕЙСТВИЕМ 1

Ключевые слова: линейные системы с последействием, равномерная экспоненциальная устойчивость, показатели Ляпунова, ляпуновская приводимость, асимптотическое подобие.

Abstract. It is shown that linear system with aftereffect on each finite-dimensional subspace of solutions with finite Lyapunov index is asimptotically homothetic under natral assumptions to a system of ordinary differential equations. The problem of the uniform exponential stability of a system with aftereffect is studied.

Основной целью работы является выяснение условий, при которых сужение системы

$$\dot{x}(t) = \int_{-r}^{0} dA(t, s) x_t(s), \quad t \in \mathbb{R} = (-\infty, \infty)$$
 (0.1)

на любое конечномерное подпространство существенных (то есть имеющих конечные показатели Ляпунова) решений асимптотически подобно некоторой системе обыкновенных дифференциальных уравнений с ограниченной матрицей коэффициентов. Здесь запись x_t означает функцию $s \to x_t(s) \doteq x(t+s)$ переменного $s \in [-r,0]$ со значениями в \mathbb{R}^n .

 $^{^1}$ Работа выполнена при поддержке РФФИ (грант № 06–01–00258) программы «Университеты России» (грант № 34125).

Кроме того, исследуется вопрос о грубости свойства равномерной экспоненциальной устойчивости системы (0.1).

Относительно системы (0.1) будем предполагать, что интеграл Стилтьеса рассматривается по переменной s при каждом фиксировенном $t,\ r>0$ и функция $A\colon \mathbb{R}\times [-r,0] \to \mathbb{M}(n,\mathbb{R})$ удовлетворяет естественным условиям: функция $(t,s)\to A(t,s)$ ограничена в полосе $\mathbb{R}\times [-r,0]$, имеет ограниченную вариацию по s, функция $t\to A(t,0)$ равномерно непрерывна на $\mathbb{R},\ A(t,-r)\equiv 0$ и для любого $\varepsilon>0$ найдется такое $\delta>0$, что для всех $|\tau|\leqslant \delta$ и всех $t\in \mathbb{R}$ выполнено неравенство $\int_{-r}^0 |A(t+\tau,s)-A(t,s)|\,ds\leqslant \varepsilon$.

В дальнейшем систему (0.1) будем отождествлять с задающей ее функцией A, а пространство всех систем A, удовлетворяющих естественным условиям, обозначать \mathfrak{A} .

В качестве пространства начальных функций рассматривается пространство $\mathfrak S$ всех непрерывных функций $u:[-r,0]\to\mathbb R^n$ либо с L_2 -нормой $\|u(\cdot)\|_2=\left(\int_{-r}^0|u(s)|^2ds\right)^{1/2}$, либо с равномерной нормой $\|u\|_0=\max_{t\in[-r,0]}|u(t)|$ (в последнем случае $\mathfrak S$ становится банаховым пространством и совпадает с пространством $C([-r,0],\mathbb R^n)$).

Всякое решение $t \to x(t,t_0,u)$ системы (0.1), удовлетворяющее начальному условию $x(t)=u(t-t_0)$ при $t\in[t_0-r,t_0]$, порождает движение $t\to x_t(\cdot,t_0,u)\doteq x_t(t_0,u)$ в пространстве $\mathfrak{S},\ t\geqslant t_0$ (при $t_0=0$ вместо $x_t(\cdot,0,u)$ пишем $x_t(u)$). Таким образом, при всех $t_0\leqslant \tau\leqslant t$ имеет место равенство $x_t=X(t,\tau)x_\tau$, где $X(t,\tau)\colon \mathfrak{S}\to\mathfrak{S}$ — оператор Коши системы (0.1).

§ 1. Теорема о приводимости [1]

Для $x_t(u)$ определим \mathbb{L}_2 -показатель Ляпунова

$$\varkappa(u) = \overline{\lim_{t \to \infty}} \frac{\ln \|x_t(u)\|_2}{t}, \quad \varkappa(0) \doteq -\infty.$$

Тогда множество $\mathfrak{S}^- \doteq \{u \in \mathfrak{S} : \varkappa(u) = -\infty\}$ образует линейное подпространство в \mathfrak{S} . Пусть \mathfrak{S}^+ — прямое дополнение подпространства \mathfrak{S}^- до пространства \mathfrak{S} , то есть $\mathfrak{S} = \mathfrak{S}^+ \oplus \mathfrak{S}^-$. Тогда если $u \in \mathfrak{S}^+$ и $u \neq 0$, то $\varkappa(u) > -\infty$.

Зафиксируем в \mathfrak{S}^+ линейное подпространство \mathbb{S}^p_0 размерности p и построим движение $t \to x_t(\mathbb{S}^p_0) \doteq \mathbb{S}^p_t$ пространства \mathbb{S}^p_0 . Будем говорить, что это движение порождено *сужением* системы A на подпространство \mathbb{S}^p_0 . Такое сужение обозначим (A, \mathbb{S}^p_0) .

Наряду с системой (A, \mathbb{S}_0^p) рассмотрим систему обыкновенных дифференциальных уравнений

$$\dot{y} = B(t)y, \quad t \geqslant 0, \quad y \in \mathbb{R}^p$$
 (1.1)

с непрерывной на полуоси \mathbb{R}_+ матричной функцией $t \to B(t)$. Будем далее отождествлять систему (1.1) с задающей ее матрицей B и называть системой B. По аналогии с подпространством \mathbb{S}_t^p , введем в рассмотрение линейное пространство \mathbb{R}_t^p размерности p с базисом $y^1(t),\ldots,y^p(t)$, образующем столбцы матрицы Коши $Y(t,\tau)$ системы B при $\tau=0$.

Пусть $\mathfrak{L}(\mathbb{S}_t^p,\mathbb{R}_t^p)$ — пространство линейных операторов, действующих из \mathbb{S}_t^p в \mathbb{R}_t^p с нормой $\|\cdot\|_{\mathbb{L}_2 \to \mathbb{R}^p}$.

О п р е д е л е н и е 1.1. Функцию $t \to L(t) \in \mathfrak{L}(\mathbb{S}_t^p, \mathbb{R}_t^p)$ будем называть обобщенным ляпуновским преобразованием систем (A, \mathbb{S}_0^p) и B, если: 1) функция $t \to L(t)$ непрерывна на \mathbb{R}_+ ; 2) при $t \geqslant 0$ оператор L(t) является гомеоморфизмом пространств \mathbb{S}_t^p и \mathbb{R}_t^p и 3) выполнено неравенство

$$\sup_{t\geqslant 0} \left(\|L(t)\|_{\mathbb{L}_2\to\mathbb{R}^p} + \|L^{-1}(t)\|_{\mathbb{R}^p\to\mathbb{L}_2} \right) < \infty.$$

Будем говорить также, что система (A, \mathbb{S}_0^p) npuводима обобщенным ляпуновским преобразованием L к системе B, или что системы (A, \mathbb{S}_0^p) и B acumnmomuчески подобны.

T е о р е м а 1.1. Пусть $\mathbb{S}_0^p \subset \mathfrak{S}^+$. Тогда

- а) найдется ортогональное $(L^*(t)L(t) = I_p)$ обобщенное ляпуновское преобразование, приводящее систему (A, \mathbb{S}_0^p) к системе B с непрерывной на \mathbb{R}_+ , верхней треугольной матрицей B(t);
- б) если, в дополнение к сказанному, всякое решение системы (A, \mathbb{S}_0^p) «продолжаемо влево», то есть найдется константа $\alpha > 0$ такая, что для каждого $u \in \mathbb{S}_0^p$, любого $\tau \in [-r,0]$ и всех $t \in \mathbb{R}_+$ выполнено неравенство $\|x_{t+\tau}(\cdot,u)\|_2 \leqslant \alpha \|x_t(\cdot,u)\|_2$, то в множестве $\{B\}$ всех систем, асимптотически подобных системе (A, \mathbb{S}_0^p) , найдется система B с ограниченной на полуоси \mathbb{R}_+ верхней треугольной матрицей B(t)).

§ 2. Рекуррентные системы с последействием [1;2]

О п р е д е л е н и е 2.1. Функцию $(t,s) \to A(t,s)$ (или, что эквивалентно, систему $A \in \mathfrak{A}$), будем называть рекуррентной (по переменной t), если для любых $\varepsilon > 0$ и T > 0 множество

$$\Theta_{A}(\varepsilon,T) \doteq \{\vartheta \in \mathbb{R} : \max_{|t| \leqslant T} \left(|A(t+\vartheta,0) - A(t,0)| + \int_{-r}^{0} |A(t+\vartheta,s) - A(t,s)| \, ds \right) \leqslant \varepsilon \}$$

относительно плотно на прямой \mathbb{R} .

При каждом $s \in [-r,0]$ сдвиг функции $t \to A(t,s)$ на константу τ обозначим $A_{\tau}(t,s) \doteq A(t+\tau,s)$. Пусть далее, $\mathcal{R}(A)$ — замыкание множества $\{A_{\tau}(t,s): \tau \in \mathbb{R}\}$ сдвигов функции A, понимаемое в следующем смысле: $\widehat{A} \in \mathcal{R}(A)$ в том и только в том случае, если для некоторой последовательности $\{\tau_i\}_{i=1}^{\infty}$ и любых $\varepsilon > 0$ и T > 0 найдется такой номер i_0 , что для всех $i \geqslant i_0$ выполнено неравенство

$$\max_{|t| \leqslant T} \left(|A_{\tau_i}(t,0) - \widehat{A}(t,0)| + \int_{-r}^{0} |A_{\tau_i}(t,s) - \widehat{A}(t,s)| \, ds \right) \leqslant \varepsilon.$$

Для каждой системы $\widehat{A} \in \mathcal{R}(A)$ полный набор \mathbb{L}_2 -показатель

Ляпунова системы $(\widehat{A}, \mathbb{S}_0^p)$ обозначим $\lambda_1(\widehat{A}), \ldots, \lambda_p(\widehat{A})$. Будем считать, что $\lambda_1(\widehat{A}) \leqslant \ldots \leqslant \lambda_p(\widehat{A})$.

T е о р е м а 2.1. Пусть $\mathbb{S}_0^p \subseteq \mathfrak{S}^+$, система $A \in \mathfrak{A}$ рекуррентна u для всех $\widehat{A} \in \mathcal{R}(A)$ u некоторой константы $\varkappa > -\infty$ выполнено неравенство $\lambda_1(\widehat{A}) \geqslant \varkappa$. Тогда найдутся система B с непрерывной u ограниченной на \mathbb{R} верхней треугольной матричей B(t) u обобщенное ляпуновское преобразование L, приводящее систему (A, \mathbb{S}_0^p) κ системе B.

§ 3. Равномерная экспоненциальная устойчивость [2]

О п р е д е л е н и е 3.1. Будем говорить, что система $A \in \mathfrak{A}$ С -равномерно экспоненциально устойчива, если найдутся такие константы $\lambda > 0$ и M > 0, что для всякого движения $t \to x_t(\cdot)$, порожденного системой A, для любого $t_0 \geqslant 0$ и всех $t \geqslant t_0$ выполнено неравенство

$$||x_t(\cdot)||_0 \le M||x_{t_0}(\cdot)||_0 \exp[-\lambda(t-t_0)].$$

T е о p е m а 3.1. Cистема $A \in \mathfrak{A}$ C -равномерно экспоненциально устойчива в том и только том случае, если показатель Боля

$$\mathfrak{B}_0(A) \doteq \overline{\lim_{t-\tau \to \infty}} \frac{\ln \|X(t,\tau)\|_{\mathfrak{S} \to \mathfrak{S}}}{t-\tau}, \quad \mathfrak{S} = C([-r,0],\mathbb{R}^n),$$

cucmeмы A удовлетворяет неравенству $\mathfrak{B}_0(A) < 0.$

Далее, пусть \mathfrak{A}_0 — подпространство всех систем из \mathfrak{A} , для которых всякое решение с конечным показателем обладает свойством «продолжаемости влево».

T е о р е м а 3.2. Свойство C -равномерной экспоненциальной устойчивости на пространстве \mathfrak{A}_0 с метрикой

$$\varrho(A,B) \doteq \sup_{t \in \mathbb{R}} \left(|A(t,0) - B(t,0)| + \int_{-r}^{0} |A(t,s) - B(t,s)| \, ds \right)$$

является грубым свойством.

Доказательство этой теоремы опирается на формулируемую ниже лемму, представляющую самостоятельный интерес.

Л е м м а 3.1. Показатель Боля системы $A \in \mathfrak{A}_0$ устойчив вверх: каждому $\varepsilon > 0$ отвечает $\delta > 0$, что для любой системы $A + B \in \mathfrak{A}_0$, где B удовлетворяет естественным условиям и неравенству $\sup_{t \geqslant 0} (|B(t,0)| + \int_{-r}^{0} |B(t,s)| ds) \leqslant \delta$, имеет место неравенство $\mathfrak{B}_0(A+B) \leqslant \mathfrak{B}_0(A) + \varepsilon$.

Если на пространстве $\mathfrak A$ всех систем вида (0.1) определить метрику ρ равенством

$$\rho(A,B) \doteq \sup_{t \in \mathbb{R}} \left(|A(t,0) - B(t,0)| + \sup_{s \in [-r,0]} |A(t,s) - B(t,s)| \right), (3.1)$$

то утверждения аналогичные выше сформулированным, останутся справедливыми без условия «продолжаемости влево», то есть на всем пространстве \mathfrak{A} .

Л е м м а 3.2. Показатель Боля системы $A \in \mathfrak{A}$ устойчив вверх, то есть каждому $\varepsilon > 0$ отвечает такое $\delta > 0$, что для любого возмущения B(t,s), удовлетворяющего естественным условиям и неравенству $\sup_{t\geqslant 0} \sup_{s\in [-r,0]} |B(t,s)| \leqslant \delta$, имеет место неравенство $\mathfrak{B}_0(A+B) \leqslant \mathfrak{B}_0(A) + \varepsilon$.

T е о р е м а 3.3. B пространстве $\mathfrak A$ с метрикой ρ , определенной равенством (3.1), свойство C-равномерной экспоненциальной устойчивости, является грубым свойством.

Список литературы

- 1. Быкова Т. С., Тонков Е. Л. Ляпуновская приводимость линейной системы с последействием // Дифференциальные уравнения. 2003. Т. 39, № 6. С. 731–737.
- 2. Быкова Т. С., Тонков Е. Л. Приводимость линейной системы с последействием // Труды Института математики и механики УрО РАН. Екатеринбург, 2005. Т. 11, № 1. С. 53–64.