УДК 517.5

© A. C. Демышев, В. И. Родионов rodionov@uni.udm.ru

ОБ ЭКВИВАЛЕНТНОМ ОПРЕДЕЛЕНИИ НЕПРЕРЫВНОЙ ДИФФЕРЕНЦИРУЕМОСТИ

Ключевые слова: непрерывно дифференцируемая функция, предел по множеству, репер, симплекс.

Abstract. Concept of S-differentiable function of some variables are defined. Necessary and sufficient conditions of S-differentiability are proved.

Пусть $\Omega_0 \subseteq \mathbb{R}^n$ — непустое открытое множество, а множество Ω таково, что $\Omega_0 \subseteq \Omega \subseteq \overline{\Omega}_0$. Произвольной функции $f: \Omega \to \mathbb{R}$ поставим в соответствие векторную функцию $F: \Omega^{n+1}_* \to \mathbb{R}^n$, действующую по следующему правилу:

$$F(x_0, x_1, \dots, x_n) = \begin{pmatrix} \Delta x_{11} & \dots & \Delta x_{1n} \\ \dots & \dots & \dots \\ \Delta x_{n1} & \dots & \Delta x_{nn} \end{pmatrix}^{-1} \begin{pmatrix} \Delta f_1 \\ \dots \\ \Delta f_n \end{pmatrix}. \tag{1}$$

Множество Ω_*^{n+1} состоит из тех наборов $\langle x_0, x_1, \ldots, x_n \rangle$ из прямого произведения Ω^{n+1} , что векторы $\Delta x_1, \ldots, \Delta x_n$ (где $\Delta x_i \doteq x_i - x_0$) образуют ортогональный репер с началом в точке x_0 и выпуклая оболочка точек x_0, x_1, \ldots, x_n принадлежит Ω . Невырожденная матрица $\Delta x \doteq \operatorname{col}(\Delta x_1, \ldots, \Delta x_n)$ приращений аргументов состоит из элементов $\Delta x_{ij} \doteq x_{ij} - x_{0j}$, а столбец Δf приращений функции состоит из чисел $\Delta f_i \doteq f(x_i) - f(x_0)$. Таким образом, $F = (\Delta x)^{-1} \Delta f$ и легко показать, что непрерывность функции f влечет непрерывность функции F. Элементы $\langle x_0, x_1, \ldots, x_n \rangle \in \Omega_*^{n+1}$ будем называть cumnлексами.

В силу ортогональности векторов $\Delta x_1, \ldots, \Delta x_n$ справедливо $\Delta x \cdot \Delta x^{\top} = \mathrm{diag} (\|\Delta x_1\|^2, \ldots, \|\Delta x_n\|^2)$ и $|\det \Delta x| = \prod_{i=1}^n \|\Delta x_i\|$, где Δx^{\top} — транспонированная к Δx матрица. Действительно, элементы произведения имеют вид $\sum_{k=1}^n \Delta x_{ik} \Delta x_{jk} = (\Delta x_i, \Delta x_j) = \|\Delta x_i\|^2 \delta_{ij}$. В частности, для обратной матрицы справедливо

$$\left(\Delta x\right)^{-1} = \Delta x^{\top} \cdot \operatorname{diag}\left(\frac{1}{\|\Delta x_1\|^2}, \dots, \frac{1}{\|\Delta x_n\|^2}\right). \tag{2}$$

О п р е д е л е н и е 1. Функция $f:\Omega\to\mathbb{R}$ называется Sдифференцируемой (или дифференцируемой в себе), если для любого $x\in\Omega$ существует конечный предел

$$\lim_{*} F(x_0, x_1, \dots, x_n), \tag{3}$$

где символ «*» означает, что предел вычисляется по всем таким симплексам $\langle x_0, x_1, \ldots, x_n \rangle \in \Omega_*^{n+1}$, что $x_0 \to x, x_1 \to x$, ..., $x_n \to x$. Другими словами, число g(x) есть предел (3), если для любого $\varepsilon > 0$ существует окрестность U_x такая, что $\|F(x_0, x_1, \ldots, x_n) - g(x)\| < \varepsilon$ для любых $x_0, x_1, \ldots, x_n \in \Omega \cap U_x$ таких, что $\langle x_0, x_1, \ldots, x_n \rangle \in \Omega_*^{n+1}$. Заметим еще, что (3) — это предел по множеству Ω_*^{n+1} , а точка $(x, x, \ldots, x) \in \Omega^{n+1}$ — точка прикосновения этого множества.

 Π е м м а 1. Если $f:\Omega_0\to\mathbb{R}$ есть функция S-дифференцируемая, то для любого $x\in\Omega_0$ существует $\operatorname{grad} f(x)$ и

$$\lim_{*} F(x_0, x_1, \dots, x_n) = \operatorname{grad} f(x). \tag{4}$$

Существование предела (3) влечет существование предела $\lim_{**} F(x_0, x_1, \dots, x_n)$ (и их равенство), вычисленного по подмножеству $\Omega_{0**}^{n+1} \doteq \left\{ \langle x_0, x_1, \dots, x_n \rangle \in (\Omega_0)_*^{n+1} : \Delta x_{ij} = 0 \text{ п } i \neq j \right\}$, когда $x_0 \to x, \, x_1 \to x, \, \dots, \, x_n \to x$. В этом случае необходимо $\Delta x_{ii} \neq 0$ при всех $i = 1, \dots, n$, а для функции (1) справедливо $F(x_0, x_1, \dots, x_n) = \operatorname{col}\left(\frac{f(x_1) - f(x_0)}{\Delta x_{11}}, \dots, \frac{f(x_n) - f(x_0)}{\Delta x_{nn}}\right)$. Поэтому

$$\lim_{*} F(x_0, x_1, \dots, x_n) = \lim_{***} \operatorname{col}\left(\frac{f(x_1) - f(x_0)}{\Delta x_{11}}, \dots, \frac{f(x_n) - f(x_0)}{\Delta x_{nn}}\right),$$

где последний предел вычисляется по подмножеству $\Omega_{0***}^{n+1} \doteq \{\langle x_0, x_1, \dots, x_n \rangle \in \Omega_{0**}^{n+1} : x_0 = x\}$ при $x_1 \to x, \dots, x_n \to x$. Но это и означает, что существует grad f(x) и справедливо (4).

Функция $f:\Omega_0\to\mathbb{R}$ называется непрерывно дифференцируемой, если для любого $x\in\Omega_0$ существует $\operatorname{grad} f(x)$ и функция $\operatorname{grad} f(\cdot):\Omega_0\to\mathbb{R}^n$ непрерывна. Непрерывная функция $f:\Omega\to\mathbb{R}$ называется гладкой, если сужение $f:\Omega_0\to\mathbb{R}$ непрерывно дифференцируемо и существует непрерывная функция $g:\Omega\to\mathbb{R}^n$ такая, что $\operatorname{grad} f(x)=g(x)$ для $\operatorname{всеx} x\in\Omega_0$.

T е о р е м а 1. Для того чтобы непрерывная функция $f \colon \Omega \to \mathbb{R}$ была S-дифференцируемой, необходимо и достаточно, чтобы она была гладкой.

Д о к а з а т е л ь с т в о. Необходимость. Предел (3) порождает функцию $g:\Omega\to\mathbb{R}^n$, $g(x)\doteq\lim_*F(x_0,x_1,\ldots,x_n)$. Пусть $x\in\Omega$ и $\varepsilon>0$. Существует окрестность U_x такая, что $\|F(x_0,x_1,\ldots,x_n)-g(x)\|<\varepsilon$ для любых $x_0,x_1,\ldots,x_n\in\Omega\cap U_x$ таких, что $\langle x_0,x_1,\ldots,x_n\rangle\in\Omega^{n+1}$. Для любого $y\in\Omega\cap U_x$ существует окрестность U_y такая, что $\|F(y_0,y_1,\ldots,y_n)-g(y)\|<\varepsilon$ для любых $y_0,y_1,\ldots,y_n\in\Omega\cap U_x\cap U_y$, что $\langle y_0,y_1,\ldots,y_n\rangle\in\Omega^{n+1}$. Но для этих симплексов выполнено $\|F(y_0,y_1,\ldots,y_n)-g(x)\|<\varepsilon$, поэтому $\|g(y)-g(x)\|<2\varepsilon$ для любого $y\in\Omega\cap U_x$, следовательно, g — непрерывная функция. Согласно лемме 1 $g(x)=\mathrm{grad}\,f(x)$ для всех $x\in\Omega_0$, поэтому f — гладкая функция.

Достаточность. Зафиксируем $x \in \Omega$ и последовательность $\{\langle x_0^k, x_1^k, \dots, x_n^k \rangle\}_{k=1}^\infty$ симплексов из Ω_*^{n+1} такую, что $\lim_k x_i^k = x$ для всех $i=0,1,\dots,n$. Зафиксируем $\varepsilon>0$. Так как f непрерывна, то F тоже непрерывна, поэтому существует последовательность $\{\langle y_0^k, y_1^k, \dots, y_n^k \rangle\}_{k=1}^\infty$ симплексов такая, что

 $\operatorname{conv}\,\langle y_0^k,y_1^k,\dots,y_n^k\rangle\subset\operatorname{Int}\,\operatorname{conv}\,\langle x_0^k,x_1^k,\dots,x_n^k\rangle\subset\Omega_0$ и $\|F(y_0^k,y_1^k,\dots,y_n^k)-F(x_0^k,x_1^k,\dots,x_n^k)\|<\varepsilon$. Очевидно, $y_i^k\underset{k}{\to}x$ при любом i, а множество $A\doteq\{x,y_0^1,y_0^2,\dots,y_0^k,\dots\}$ компактно.

Пусть $\Delta y_i^k \doteq y_i^k - y_0^k$ и $\Delta f_i^k \doteq f(y_i^k) - f(y_0^k)$. Поскольку f — гладкая, то $f:\Omega_0 \to \mathbb{R}$ непрерывно дифференцируема. Следовательно, существует функция $\lambda = \lambda(\xi,\eta)$, $(\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^n$, такая, что $\lambda \to 0$ при $\| \eta \| \to 0$ равномерно по всем $\xi \in A$ и

$$\Delta f_i^k = \left(\operatorname{grad} f(y_0^k), \, \Delta y_i^k\right) + \lambda(y_0^k, \Delta y_i^k) \, \|\Delta y_i^k\|$$

для всех допустимых i и k. Согласно (2) справедлива цепочка

$$F(y_0^k, y_1^k, \dots, y_n^k) = (\Delta y^k)^{-1} \cdot \operatorname{col}\left(\Delta f_1^k, \dots, \Delta f_n^k\right) = \operatorname{grad} f(y_0^k) + \left(\Delta y^k\right)^{-1} \cdot \operatorname{col}\left(\lambda(y_0^k, \Delta y_1^k) \|\Delta y_1^k\|, \dots, \lambda(y_0^k, \Delta y_n^k) \|\Delta y_n^k\|\right) =$$

$$= g(y_0^k) + (\Delta y^k)^{\top} \cdot \operatorname{col}\left(\frac{\lambda(y_0^k, \Delta y_1^k)}{\|\Delta y_1^k\|}, \dots, \frac{\lambda(y_0^k, \Delta y_n^k)}{\|\Delta y_n^k\|}\right)$$

(заметим, что в силу гладкости f существует непрерывная функция $g:\Omega\to\mathbb{R}^n$ такая, что $\operatorname{grad} f(y)=g(y)$ для $\operatorname{всех}\ y\in\Omega_0$). Следовательно, если $\sigma^k\doteq \left\|F(y_0^k,y_1^k,\ldots,y_n^n)-g(y_0^k)\right\|$, то

$$\sigma^k = \left\| \operatorname{col} \left(\sum_{i=1}^n \lambda(y_0^k, \Delta y_i^k) \frac{\Delta y_{i1}^k}{\|\Delta y_i^k\|}, \dots, \sum_{i=1}^n \lambda(y_0^k, \Delta y_i^k) \frac{\Delta y_{in}^k}{\|\Delta y_i^k\|} \right) \right\|.$$

Поскольку $\lambda \rightrightarrows 0$, то существует шар $B_{\delta}(0)$ радиуса $\delta > 0$ такой, что $|\lambda(\xi,\eta)| < \varepsilon$ для любых $(\xi,\eta) \in A \times B_{\delta}(0)$.

Существует N_1 такое, что $\|y_i^k - x\| < \frac{\delta}{2}$ для любых $k > N_1$ и $i = 0, 1, \ldots, n$. В частности, $\|\Delta y_i^k\| < \delta$, то есть $\Delta y_i^k \in B_\delta(0)$, поэтому $|\lambda(y_0^k, \Delta y_i^k)| < \varepsilon$, а $\sigma^k < n^{3/2} \varepsilon$ для любого $k > N_1$.

В силу непрерывности функции g существует N_2 такое, что $\|g(y_0^k)-g(x)\|<\varepsilon$, следовательно, для всех $k>\max{\{N_1,N_2\}}$ имеет место оценка $\|F(x_0^k,x_1^k,\dots,x_n^k)-g(x)\|<(2+n^{3/2})\,\varepsilon$.

С ледствие 1. Для того чтобы функция $f: \Omega_0 \to \mathbb{R}$ была S-дифференцируемой, необходимо и достаточно, чтобы она была непрерывно дифференцируемой.