ПОСТРОЕНИЕ КОМПРОМИССНЫХ ПОЗИЦИОННЫХ СТРАТЕГИЙ В НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ИГРАХ НЕСКОЛЬКИХ ЛИЦ

Ключевые слова: дифференциальная игра, компромиссный набор стратегий, равновесие по Нэшу, позиционное управление.

Abstract. A compromise set of positional strategies in a differential game of several persons is constructed.

1. Игра в нормальной форме

В игре участвуют $k \geq 2$ игроков. Множество стратегий i-го игрока обозначим символом U_i, $i \in K = \{1, \ldots, k\}$. В процессе конфликта каждый игрок выбирает стратегию из своего множества стратегий, в результате чего складывается набор стратегий

$$w = (u_1, \ldots, u_k),$$

который называется ситуацией. Множество всех ситуаций является декартовым произведением множеств U_i, $i \in K$ и обозначается символом

$$W = U_1 \times \cdots \times U_k.$$

Заинтересованность игроков в ситуациях проявляется в том, что каждому игроку $i \in K$ в любой ситуации $w \in W$ приписывается число, выражающее степень удовлетворения его интересов в этой ситуации (чем оно меньше, тем степень удовлетворения выше). Это число обозначим символом $I_i(w)$.

67
Число \(I_i(w) \) называется платеж игроку \(i \) в ситуации \(w \), а функция \(I_i : W \rightarrow R^1 \) — функцией платы этого игрока.

Таким образом, описанный конфликт представляется тройкой

\[
\Gamma = \{ K, \{ U_i, i \in K \}, \{ I_i, i \in K \} \}.
\]

Дополнительно принимается, что каждый из игроков не заинтересован в значительном выигрыше какого-либо из своих противников, т.е. в том, чтобы функция платы какого-либо игрока оказалась весьма малой. Указанное предположение, например, действует при выборах в представительный орган власти. Каждый игрок (политическая партия) заинтересован получить максимальное число выборных мест, но при этом он опасается, что какая-либо другая партия наберет абсолютное большинство в органе власти и сможет диктовать свою волю остальным партиям. В этом примере за функцию платы игрока следует принять число выигранных соответствующей партией мест со знаком минус.

Для игры \(\Gamma \) введем понятие компромиссного набора стратегий.

Определение 1.1. Пусть

\[
S_s = (S_{s1}, \ldots, S_{sk}), \quad S^s = (S^s_1, \ldots, S^s_k), \quad S_{si} \leq S^s_i, \quad i \in K.
\]

Ситуация

\[
w = (u^s_1, \ldots, u^s_j, \ldots, u^s_k) \in W
\]

называется компромиссной относительно векторов \(S_s, S^s \in R^k \), если для всех \(i \in K \) выполняются неравенства

\[
S_{si} \leq \min_{u_i \in U_i} I_i(u^s_1, \ldots, u_i, \ldots, u^s_k) \leq I_i(u^s_1, \ldots, u^s_i, \ldots, u^s_k) \leq S^s_i.
\] \hspace{1cm} (1.1)

Из приведенного определения следует, что для компромиссного набора стратегий значение платежа \(i \)-го игрока лежит в промежутке \([S_{si}, S^s_i], i \in K \), и никакое единоличное уклонение игрока
от стратегии, предписывающей компромиссным набором, не позволяют ему получить значение платы лучше (меньше) нижней компромиссной оценки.

Заметим, что при $S_* = S^*$ определение компромиссного набора стратегий переходит в определение равновесия по Нэшу. Компромиссный набор стратегий сохраняет свойство устойчивости по отношению к игре уклонисту (в ослабленном варианте). При этом среди компромиссных наборов стратегий можно ожидать существование такого набора, для которого справедливы неравенства (для всех $i \in K$)

$$I_i(\hat{u}_1^{\text{комм}}, \ldots, \hat{u}_i^{\text{комм}}, \ldots, \hat{u}_k^{\text{комм}}) < I_i(u_1^0, \ldots, u_i^0, \ldots, u_k^0),$$

где $u_1^0, \ldots, u_{i-1}^0, u_i^0, u_{i+1}^0, \ldots, u_k^0$ — равновесный по Нэшу набор стратегий.

2. Дифференциальная игра

Построение компромиссного управления в классе позиционных стратегий осуществляется дифференциальной игры следующего вида. Динамика игры описывается обыкновенным векторным нелинейным дифференциальным уравнением

$$\dot{x} = f_0(t, x) + A(t, x) \cdot \sum_{i=1}^k u_i,$$

где $t \in \mathbb{R}^1$ — текущее время, $x \in \mathbb{R}^n$ — фазовый вектор игры, $u_i \in \mathbb{R}^m$ — вектор управляющих параметров i-го игрока, $i \in K$, $A(t, x)$ — матрица размера $m \times n$.

Функция $f: \mathbb{R}^{n+1} \times \mathbb{R}^{km} \to \mathbb{R}^n$ вида

$$f(t, x, u_1, \ldots, u_k) = f_0(t, x) + A(t, x) \sum_{i=1}^k u_i,$$

$$t \in \mathbb{R}^1, x \in \mathbb{R}^n, u_i \in \mathbb{R}^m, i \in K$$

69
при каждом фиксированном $t \in R^1$ непрерывна по совокупности переменных x, u_1, \ldots, u_k, а при фиксированных значениях $x \in R^n, u_i \in R^m, i \in K$, измерима по Борелю по переменной t. Кроме того, относительно функции f предполагается, что она удовлетворяет условию Липшица по переменной и условию продолжимости решения.

На векторы управляющих параметров игроков наложены геометрические ограничения в форме включений $u_i \in P_i$, где $P_i \subset R^m, i \in K$ компактные множества. Момент $T \in R^1$ окончания игры фиксирован, а функции платы игроков содержат только терминальные слагаемые,

$$I_i(u_1, \ldots, u_k) = \varphi(x(T)), \ i \in K, \quad (2.2)$$

где $\varphi_i : R^n \to R^1, i \in K$ — непрерывные функции. Дополнительно предполагается, что для любого вектора $s \in R^m$ и любых номеров $i \in K$ справедливо неравенство

$$\min_{u_i \in P_i} s_i + \min_{u_k \in P_k} < s, u_k > \leq 0. \quad (2.3)$$

Свои управляющие параметры каждый игрок формирует, основываясь на информации о текущем времени и реализованномся фазовом векторе объекта, при этом он не осведомлен о выборе управляющих параметров остальных игроков в этот момент времени. Понимая позиционной стратегии игрока и движения объекта, отвечающего набору позиционных стратегий, определяются аналогично работе [1].

Пусть функция $g : R^{n+1} \to R^1$ является непрерывно дифференцируемой функцией своих аргументов, для которой выполняется неравенство

$$\frac{\partial g}{\partial t}(t, x) + \left\langle \frac{\partial g}{\partial x}(t, x), f_0(t, x) \right\rangle \leq 0, \ (t, x) \in R^{n+1}, t \leq T. \quad (2.4)$$

Предположим также, что для некоторого числа $c \in R^1$ множество

$$M_c = \{x \in R^n | g(T, x) \leq c\}$$

70
ограничено. Полагаем

$$S_i^* = \max_{x \in M_c} \varphi_i(x), \quad S_i^* = \min_{x \in M_c} \varphi_i(x), \quad i \in K,$$

$$W_c = \{(t, x) \in \mathbb{R}^{n+1} | g(t, x) \leq c\}.$$ Определим набор позиционных стратегий $u_1^{\text{комп}}, \ldots, u_k^{\text{комп}}$ всех игроков из условия

$$u_i^{\text{комп}} = \begin{cases} u_i^*(t, x), & (t, x) \notin W_c \\ \text{произвольный вектор из } P_i, & (t, x) \in W_c, \end{cases}$$

где

$$\langle (A(t, x))^T \frac{\partial g(t, x)}{\partial x}, u_i^*(t, x) \rangle = \min_{u_i \in P_i} \langle (A(t, x))^T \frac{\partial g(t, x)}{\partial x}, u_i \rangle, \quad i \in K.$$

Т е о р е м а 2.1. Набор позиционных стратегий (2.5) всех игроков является компромиссным относительно векторов

$$S_0 = (S_1^*, \ldots, S_k^*), \quad S^* = (S_1^*, \ldots, S_k^*)$$

для любой начальной позиции $(t_0, x_0) \in W_c, \quad t_0 \leq T$.

Д о к а з а т е л ё с т в о. Достаточно показать, что $x(T) \in M_c$ для всех движений

$$x(\cdot) \in X[t_0, x_0, U_1^{\text{комп}}, \ldots, U_{i-1}^{\text{комп}}, U_{i+1}^{\text{комп}}, \ldots, U_k^{\text{комп}}]$$

и всех номеров $i \in K$. От противного приходим к существованию номера $i \in K$ и движения

$$x^*(\cdot) \in X[t_0, x_0, U_1^{\text{комп}}, \ldots, U_{i-1}^{\text{комп}}, U_{i+1}^{\text{комп}}, \ldots, U_k^{\text{комп}}]$$

таких, что

$$g(T, x^*(T)) > c. \quad (2.6)$$

71
Неравенство (2.6) невозможно. Действительно, в силу \(g(x_0) < c \) должен существовать промежуток времени \((t', t'') \subset [l_0, T]\) не нулевой длины, на котором функция \(g(t, x^*(t)) \) монотонно возрастает и при этом выполняется условие

\[
(t, x^*(t)) \notin W_c, t \in (t', t'').
\]

Вычислим полную производную по времени от этой функции вдоль движения. В силу (2.3), (2.4) имеем

\[
\frac{d}{dt} g(t, x^*(t)) = \frac{\partial g(t, x^*(t))}{\partial t} + \frac{\partial g(t, x^*(t))}{\partial x} f_0(t, x^*(t)) + \sum_{j \in K(i)} A(t, x^*(t)) u_j^e(t, x^*(t)) + A(t, x^*(t)) u_i(t) \leq
\]

\[
\leq \sum_{j \in K(i)} \left((A(t, x^*(t))^T \frac{\partial g(t, x^*(t))}{\partial x}) u_j^e(t, x^*(t)) \right) + \left((A(t, x^*(t))^T \frac{\partial g(t, x^*(t))}{\partial x}) u_i(t) \right) \leq
\]

\[
\leq \min_{u_j \in P_j} \left((A(t, x^*(t))^T \frac{\partial g(t, x^*(t))}{\partial x}) u_j \right) + \max_{u_i \in P_i} \left((A(t, x^*(t))^T \frac{\partial g(t, x^*(t))}{\partial x}) u_i \right) < 0, \ t \in (t', t'').
\]

Полученное неравенство противоречит монотонному возрастанию функции \(g(t, x^*(t)) \) на промежутке времени \((t', t'')\). Теорема доказана.
3. Модельный пример

Рассмотрим дифференциальную игру трех лиц, динамика которой описывается следующей системой нелинейных дифференциальных уравнений:

\[
\begin{align*}
\dot{x} &= -x - 3y + 4xy + 4y^2 + u_1 + v_1 + w_1, \\
\dot{y} &= 2x - 3y - 2x^2 - 2xy + u_2 + v_2 + w_2.
\end{align*}
\] (3.1)

Здесь \(m = n = 2 \),

\[
f_0(t, x, y) = \begin{pmatrix} -x - 3y + 4xy + 4y^2 \\ 2x - 3y - 2x^2 - 2xy \end{pmatrix}, \quad A(t, x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

На векторы управляющих параметров наложены геометрические ограничения

\[
u, v, w \in P = \left\{ \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \mid p_1^2 + p_2^2 \leq 5 \right\}.
\]

Легко видеть, что условия (2.3) для них выполнены.

В фазовом пространстве игры зафиксированы точки \(M_i \), \(i = 1, 2, 3 \), имеющие соответственно радиус-векторы

\[
\overline{r}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \overline{r}_2 = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \overline{r}_3 = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}
\]

относительно начала координат. Эти точки в дальнейшем будем называть целевыми множествами игроков. На рис. 1 показано расположение целевых множеств игроков относительно принятой системы координат.

Момент окончания игры полагаем \(T = 1 \). Функции платы (2.2) игроков определим формулами

\[
\varphi_i(x(T), y(T)) = \sqrt{(x(T) - x_i)^2 + (y(T) - y_i)^2}, \quad i = 1, 2, 3.
\]

73
Рис. 1. Расположение целевых точек

Таким образом, платой игрока служит расстояние от фазового вектора управляемого объекта в момент окончания игры до целевого множества этого игрока. Полагаем

$$g(x, y) = x^2 + 2y^2, \quad (x, y) \in \mathbb{R}^2.$$

Вычислим производную функции g в силу системы

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -x - 3y + 4xy + 4y^2 \\ 2x - 3y - 2x^2 - 2xy \end{pmatrix}.$$

Имеем

$$\left\langle \frac{\partial g}{\partial x}(x), f_0(x) \right\rangle = \left\langle \begin{pmatrix} 2x \\ 4y \end{pmatrix}, \begin{pmatrix} -x - 3y + 4xy + 4y^2 \\ 2x - 3y - 2x^2 - 2xy \end{pmatrix} \right\rangle =$$

$$= -2x^2 + 2xy - 12y^2 = \left\langle \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle < 0$$

для всех $(x, y) \in \mathbb{R}^2, (x, y) \neq 0$. Условие (2.4) выполнено. Множества

$$M_c = \{(x, y) \in \mathbb{R}^2 | g(x, y) \leq c\} = \{(x, y) \in \mathbb{R}^2 | x^2 + 2y^2 \leq c\}$$

74
ограничены при любых значениях константы $c \in R^1$. Нижние и верхние компромиссные оценки для игроков вычисляются по формулам $(i \in \{1, 2, 3\})$

\[
S_i^*(c) = \max_{(x,y,z)\in M_c} \sqrt{(x - x_i)^2 + (y - y_i)^2},
\]

\[
S_i^*(c) = \min_{(x,y,z)\in M_c} \sqrt{(x - x_i)^2 + (y - y_i)^2}.
\]

Полагаем $c = 1, 2$. Тогда

\[
S_{1*} = 0, 227482, \; S_{2*} = 0, 167777, \; S_{3*} = 0, 0208233,
\]

\[
S_{1*} = 1, 7453, \; S_{2*} = 1, 91574, \; S_{3*} = 1, 7727.
\]

Производная функции g в силу системы (3.1) здесь имеет вид

\[
\frac{dg}{dt} \big|_{(3.1)} = \left< \frac{\partial g}{\partial x}(x, f_0(x)), \left(\begin{array}{c} u_1 + v_1 + w_1 \\ u_2 + v_2 + w_2 \end{array} \right) \right> =
\]

\[
= -2x^2 + 2xy - 12y^2 + 2(xu_1 + 2yu_2) +
\]

\[
+ 2(xv_1 + 2yv_2) + 2(xw_1 + 2yw_2).
\]

Тогда компромиссные стратегии игроков в соответствии с соотношением (2.5) определяются из условия

\[
w^{\text{ком}}(x, y) = v^{\text{ком}}(x, y) = w^{\text{ком}}(x, y) =
\]

\[
= \begin{cases}
-5 \frac{x}{\sqrt{x^2 + 4y^2}}, & g(x, y) > c \\
\frac{2y}{\sqrt{x^2 + 4y^2}}, & \text{произвольный вектор из } P, \; g(x, y) \leq c.
\end{cases}
\]

(3.2)

Рассмотрим несколько (пять) начальных позиций $(t_0, \left(\begin{array}{c} x_0 \\ y_0 \end{array} \right))$
в игре. Например, позиции \((t_0 = 0)\)

\[
A_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 \\ 0.75 \end{pmatrix}, \\
A_3 = \begin{pmatrix} -0.4 \\ 0.69 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0.82 \\ 0.47 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 0.12 \\ 0.75 \end{pmatrix}.
\]

Легко проверяется, что для каждой из них выполнено условие

\[
t_0 < T, \quad \left(\frac{x_0}{y_0} \right) \in W_c = \left\{ \left(\frac{x}{y} \right) \in R^2 \mid g(x, y) \leq c \right\}.
\]

Для произвольного движения из пучка, выходящего из начального положения \((t_0, \left(\frac{x_0}{y_0} \right))\) и порожденного компромиссным набором стратегий (3.2), вычислим значения плат игроков и занесем их в табл. 1. По теореме 2.1 эти значения должны находиться в пределах компромиссных оценок, полученных выше.

Таблица 1

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(0.2 < 1, 1.0 < 1.8)</td>
<td>(0.2 < 0.9 < 1.9)</td>
<td>(0.0 < 1.1 < 1.8)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(0.2 < 0.8 < 1.7)</td>
<td>(0.1 < 0.8 < 1.9)</td>
<td>(0.0 < 1.0 < 1.7)</td>
</tr>
<tr>
<td>(A_3)</td>
<td>(0.2 < 1.2 < 1.7)</td>
<td>(0.2 < 1.2 < 1.9)</td>
<td>(0.0 < 1.1 < 1.8)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>(0.2 < 0.8 < 1.7)</td>
<td>(0.2 < 1.0 < 1.9)</td>
<td>(0.0 < 0.6 < 1.8)</td>
</tr>
<tr>
<td>(A_5)</td>
<td>(0.2 < 1.0 < 1.7)</td>
<td>(0.2 < 1.0 < 1.9)</td>
<td>(0.0 < 0.9 < 1.8)</td>
</tr>
</tbody>
</table>

Из данных табл. 1 видно, что указанный факт действительно имеет место.

Допустим, что какой-либо из игроков уклоняется от стратегии, предписываемой ему компромиссным набором. Стратегию
уклонения i-й игрока, $i \in \{1, 2, 3\}$ выбирает, например, в виде

$$
\begin{align*}
\begin{cases}
\frac{x_i - x}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}, \\
\frac{y_i - y}{\sqrt{(x_i - x)^2 + (y_i - y)^2}}, \\
\frac{z_i - z}{\sqrt{(x_i - x)^2 + (y_i - y)^2}},
\end{cases}
\end{align*}
$$

(при этом z_i — произвольный вектор из \mathbb{R}^2, $(x, y) \neq (x_i, y_i)$)

Рассмотрим две ситуации.

В первой ситуации остальные игроки назначают свою управляющие воздействия случайным образом.

Во второй — в соответствии с компромиссными стратегиями (3.2). В качестве начального положения возьмем позицию $\left(0, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)$. Результаты численных экспериментов занесем в табл. 2.

<table>
<thead>
<tr>
<th>Номер игрока-уклониста</th>
<th>Случайное управление</th>
<th>Компромиссное управление</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нижняя компр. оценка</td>
<td>Плата игрока-уклониста</td>
</tr>
<tr>
<td>1</td>
<td>0,13</td>
<td>0,9</td>
</tr>
<tr>
<td>2</td>
<td>0,566</td>
<td>1,129</td>
</tr>
<tr>
<td>3</td>
<td>0,57</td>
<td>1,131</td>
</tr>
</tbody>
</table>

Таким образом, игрок-уклонист в состоянии преодолеть свою нижнюю компромиссную оценку при случайном управлении остальных игроков, и он не может этого сделать, когда остальные игроки придерживаются компромиссных стратегий. Траектории управляемой точки для второй ситуации показаны на рис. 2.

Можно показать, что для начальной позиции

$$
(0_0, \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

177
набор стратегий

\[
 u^0(x, y) = v^0(x, y) = w^0(x, y) = \\
 = \begin{cases} \\
 \left(\frac{-x}{\sqrt{x^2 + 4y^2}}, \frac{-2y}{\sqrt{x^2 + 4y^2}} \right), & (x, y) \neq 0 \\
 \text{произвольный вектор из } P, & (x, y) = 0
 \end{cases}
\]

удерживает текущую позицию игры в начале координат на всем промежутке времени \([t_0, T]\) при любых действиях игрока-укло-
пистя. Следовательно, этот набор стратегий является равнове-

ном по Нэшу. При этом

\[I_i(u^0, v^0, w^0) = \varphi_i(0, 0, 0) = 1, \quad i = 1, 2, 3. \]

Покажем, что в рамках компромиссных стратегий каждый игрок может строго улучшить этот результат. Полагаем

\[\hat{u}^{\text{комн}}(x, y) = \hat{v}^{\text{комн}}(x, y) = \hat{w}^{\text{комн}}(x, y) = \]

\[\begin{cases} \frac{x}{\sqrt{x^2 + 4y^2}}, & g(x, y, z) > c \\ \frac{y}{\sqrt{x^2 + 4y^2}}, & g(x, y, z) < c \\ \frac{z}{\sqrt{(x-x_*)^2 + (y-y_*)^2}}, & g(x, y, z) \leq c. \end{cases} \]

Здесь

\[x_* = \frac{x_1 + x_2 + x_3}{3} = \frac{-1 + \sqrt{3}}{6}, \]
\[y_* = \frac{y_1 + y_2 + y_3}{3} = \frac{3 + \sqrt{3}}{6}. \]

Заметим, что стратегии

\[\hat{u}^{\text{комн}}, \hat{v}^{\text{комн}}, \hat{w}^{\text{комн}} \]

определенны корректно, т. к.

\[g(x_*, y_*, z_*) = 1, 2589 > c = 1, 2. \]

Для данного набора стратегий значения плат игроков следую-

шие:

\[I_1(\hat{u}^{\text{комн}}, \hat{v}^{\text{комн}}, \hat{w}^{\text{комн}}) = 0, 845485 < 1 = I_1(u^0, v^0, w^0), \]
\[I_2(\hat{u}^{\text{комн}}, \hat{v}^{\text{комн}}, \hat{w}^{\text{комн}}) = 0, 547274 < 1 = I_2(u^0, v^0, w^0), \]
\[I_3(\hat{u}^{\text{комн}}, \hat{v}^{\text{комн}}, \hat{w}^{\text{комн}}) = 0, 881385 < 1 = I_3(u^0, v^0, w^0). \]

Таким образом, каждый из игроков действительно получил ре-

зультат, лучший, чем при равновесном наборе стратегий.

79
Список литературы

3. Кулагин Е. В., Лутманов С. В., Петухов И. Построение гарантирующих стратегий в одной нелинейной дифференциальной игре наведения-уколения// Проблемы механики и управления: Межвуз. сб. науч. трудов. Пермь. 2004. С.34–45
4. Лутманов С. В. Об одном способе построения стабильного моста в нелинейной дифференциальной игре// Проблемы механики и управления: Межвуз. сб. науч. трудов. Пермь. 2003. С.41–48