ОБ УРОВНЯХ ОДНОМЕРНОГО ДИСКРЕТНОГО ОПЕРАТОРА ШРЕДИНГЕРА С УБЫВАЮЩИМ ПОТЕНЦИАЛОМ

Ключевые слова: дискретное уравнение Шредингера, собственное значение, резонанс, асимптотика.

Abstract. We consider a one-dimensional discrete Schrödinger operator with a decreasing small potential. The existence of the unique level (eigenvalue or resonances) near the boundary points \pm 2 of the essential spectrum is proved. We investigate the asymptotic behaviour of these levels.

Введение

Рассмотрим дискретный (разностный) оператор Шредингера H_0 (см. [1]), действующий в $l^2(\mathbb{Z})$ по формуле

$$H_0 \{x(n)\}_{n \in \mathbb{Z}} = \{x(n+1) + x(n-1)\}_{n \in \mathbb{Z}}.$$

Оператор H_0 является ограниченным и самосопряженным, а его спектр равен (см. [2], а также доказательство теоремы 1.1 ниже) $\sigma(H_0) = [-2, 2]$.

Положим $H = H_0 + V$, где $V = \{V(n)\}_{n \in \mathbb{Z}} \in l^\infty(\mathbb{Z})$ действует в $l^2(\mathbb{Z})$ по формуле $V \{x(n)\}_{n \in \mathbb{Z}} = \{V(n)x(n)\}_{n \in \mathbb{Z}}$. Предполагаем, что $V \neq 0$ и $V(n)$ принимает только вещественные значения, тогда оператор V также является ограниченным самосопряженным оператором (предельным).

Операторы H указанного вида активно изучаются математиками (см., например, [1;3] и имеющиеся там ссылки). Они берут

В дальнейшем предполагаем, что функция \(V(n) \) удовлетворяет оценке \(|V(n)| \leq C e^{-a|n|} \), где \(a > 0, \ n \in \mathbb{Z} \). Будем далее пользоваться обозначением \(H_\varepsilon = H_0 + \varepsilon V \), где \(\varepsilon > 0 \) — (малый) параметр.

В данной работе доказано, что при малых \(\varepsilon \) вблизи точек \(\pm 2 \) — границы существенного спектра — существует ровно один уровень (собственное значение или резонанс); также исследована асимптотика этих уровней при \(\varepsilon \to 0 \). Аналогичная задача для собственного значения и гиперэйрного оператора Шредингера \(-\frac{d^2}{dx^2} + \varepsilon V(x) \) с \(V(x) \in C^\infty \) ранее исследовалась Саймоном [6].

1. Функция Грина

Ядро (являющееся матрицей) \(\{G(n, m, E)\}_{n, m \in \mathbb{Z}} \) резольвенты \(R_0(E) = (H_0 - E)^{-1} \) оператора \(H_0 \), возможно, продолженное по параметру \(E \) на второй лист (см. ниже), будем для краткости называть функцией Грина.

Теорема 1.1. Имеет место формула

\[
G(n, m, E) = G(n - m, E) = -\frac{1}{\sqrt{E^2 - 4}} \left(E - \sqrt{E^2 - 4} \right)^{|n - m|},
\]

где \(E \in \mathbb{C} \setminus [-2, 2] \), а разрез для корня выбирается вдоль отрицательной полусоси.

Доказательство. Докажем вначале равенство

\[
(H_0 - E)G(n, E) = \delta_{n, 0},
\]

где \(\delta_{n, m} \) — символ Кронекера. Очевидно, что последовательности вида \(x(n) = Cq^{\pm n} \) с

\[
q = \frac{E + \sqrt{E^2 - 4}}{2}
\]

удовлетворяет однородному уравнению \((H_0 - E)x(n) = 0 \). Таким образом, (1.2) выполнено для \(n \neq 0 \). Поскольку ядро резольвенты должно убывать при \(|n - m| \to \infty \), требуется выполнение
условия $|q| < 1$. Величина $rac{E}{2} = \frac{1}{2} \left(q + \frac{1}{q} \right)$, будучи функцией Жуковского, отображает как внешность, так и внутренность единичного круга на область $\mathbb{C} \setminus [-1, 1]$. Обратная двузначная функция (1.3) при выборе знака $r = \mathbb{E}$, как легко видеть, переводит $\mathbb{C} \setminus [-2, 2]$ на круг $\{|q| < 1\}$. Наконец, множитель в правой части (1.1) определяется равенством (1.2) при $n = 0$.

Поскольку $G(n, E)$ экспоненциально убывает при $|n| \to \infty$, то определен оператор в $l^2(\mathbb{Z})$ следующего вида:

$$R_0(E)x(n) = \sum_{m \in \mathbb{Z}} G(n - m, E)x(m).$$

При этом

$$(H_0 - E)R_0(E)x(n) = \sum_{m \in \mathbb{Z}} (H_0 - E)G(n - m, E)x(m) =$$

$$= \sum_{m \in \mathbb{Z}} \delta_{n,m}x(m) = x(n).$$

(1.4)

С другой стороны, положим

$$R_0(E)(H_0 - E)x(n) = y(n),$$

(1.5)

tогда в силу (1.4) $(H_0 - E)x(n) = (H_0 - E)y(n)$. Обозначим $z = x - y$ и докажем, что $z = 0$. Для этого рассмотрим, следуя [2], унитарный оператор $U : l^2(\mathbb{Z}) \to L^2(-\pi, \pi)$,

$$Ux(n) = \sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{2\pi}} e^{int} x(n) = \tilde{x}(t).$$

Имеем

$$UH_0x(n) = 2\cos t \tilde{x}(t) = \tilde{H}_0Ux(n),$$

gде \tilde{H}_0 — оператор умножения на $2\cos t$ в $L^2(-\pi, \pi)$. Таким образом, операторы H_0 и \tilde{H}_0 унитарно эквивалентны. Уравнение $(\tilde{H}_0 - E)z(t) = 0$ имеет, очевидно, только нулевые решения в $L^2(-\pi, \pi)$. Следовательно, $z = 0$, откуда $x - y = z = 0$. В соотношении с (1.4), (1.5) это доказывает равенство $R_0(E) = R_0(E)$.

87
Теорема 1.2. Существенный спектр оператора H совпадает с $[-2, 2]$.

Доказательство. Согласно утверждению об относительно компактных возмущениях [6] достаточно доказать, что $\{V(n)G(n - m, i)\}_{n, m \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. Имеем

$$\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} |V(n)G(n - m, i)|^2 = \sum_{n \in \mathbb{Z}} |V(n)|^2 \sum_{m \in \mathbb{Z}} |G(m, i)|^2 < \infty,$$

в силу оценки на $V(n)$ (см. Введение), (1.1) и неравенства

$$|E - \sqrt{E^2 - 1}| < 1$$

для $E \notin [-2, 2]$ (см. доказательство теоремы 1.1).

2. Уравнения и их асимптотика

Уравнение Шредингера

$$(H_0 + V)x = Ex,$$

(2.1)

рассматриваемое в классе $\ell^2(\mathbb{Z})$, перепишем для $E \notin \sigma(H_0)$ в виде

$$x = -R_0(E)Vx.$$

(2.2)

В случае, когда E принадлежит второму (гнейфизическому?) листу, ненулевые решения x уравнения (2.2), вообще говоря, экспоненциально возрастают вместе с функцией Грона (1.1) (в этом случае для $E \notin [-2, 2]$ выполнено неравенство $|E - \sqrt{E^2 - 1}| > 1$ — см. доказательство теоремы 1.1). Такие E можно отнести к резонансам (см. мотивировку в [7]).

По физическим соображениям величину $|\text{Im} E|$ можно считать достаточно малой (время жизни гнейфизационного состояния, отвечающего резонансу, обратно пропорционально данной величине — см. [8], а слишком короткоживущие состояния
не играют роли в физических процессах. Но числа E, близкие к отрезку $[-2, 2]$, переводятся функцией (1.3), обратной к функции Жуковского, в точки, близкие к окружности $|q| = 1$. Поэтому в силу теоремы 1.1 для данных E функция $G_n(E)$ представляет собой $\text{const} \ e^{\alpha |n|}$ с α по модулю близким к единице. Поскольку вследствие (2.2) $x(n)$ при $|n| \to \infty$ ведет себя как и $G_n(E)$, то для исследования резонансов допустимо предположение $\sqrt{v} \in \ell^2(\mathbb{Z})$.

Определение 2.1. Число E, принадлежащее второму листу римановой поверхности функции Грина $G(E)$, будем называть резонансом оператора H, если существует ненулевое решение x уравнения (2.2) такое, что $\sqrt{v} \in \ell^2(\mathbb{Z})$.

Определение 2.2. Уровнем оператора H будем называть его собственное значение или резонанс.

Сделаем в уравнении (2.2) замену, полагая $y = \sqrt{v}x$, тогда

$$y = -\sqrt{v}R_0(k)\sqrt{v}y.$$

(2.3)

Для исследования уровней будем рассматривать уравнение (2.3) в классе $\ell^2(\mathbb{Z})$.

Перейдем к новой переменной $k = \frac{\sqrt{E^2 - 1}}{2}$ вместо E. Будем пользоваться обозначениями $R_0(k)$ вместо $R_0(E)$.

Положим

$$G_1(n, k) = G(n, k) + \frac{1}{2k} = -\frac{1}{2k} ((\sqrt{1 + k^2} - k)|n| - 1).$$

(2.4)

Лемма 2.1. Функция

$$\left\{ \sqrt{v(n)} G_1(n - m, k) \sqrt{v(m)} \right\}_{(n,m) \in \mathbb{Z}^2}$$

является двусторонней аналитической $L^2(\mathbb{Z}^2)$-значной функцией в окрестности точки $k = 0$.
Доказательство. Введем обозначение $f_n(k) = (\sqrt{1 + k^2} - k)^{|n|}$. Тогда

$$G_1(n, k) = -\frac{1}{2k} (f_n(k) - f(0)) = -\frac{1}{2k} \int_{[0, k]} f'_n(x) \, dx =$$

$$= \frac{|n|}{2k} \int_{[0, k]} \frac{(\sqrt{1 + x^2} - x)^{|n|}}{\sqrt{1 + x^2}} \, dx. \quad (2.6)$$

Первая из ветвей функции

$$\sqrt{1 + x^2} - x = -i \left((-i x) - \sqrt{(-i x)^2 - 1} \right),$$

будучи с точностью до множителя $-i$ обратной к функции Жуковского относительно переменной $-ix$, переводит окрестность отрезка $[-1, 1]$ и, следовательно, окрестность нуля (последнюю как относительно переменной $-ix$, так и относительно переменной x) внутрь кольца $\{1 - \sigma < |x| \leq 1\}$, где $\sigma > 0$ произвольно мало. Аналогично вторая ветвь данной функции переводит окрестность нуля внутрь кольца $\{1 \leq |x| < 1 + \sigma\}$. Отсюда и из (2.6) вытекает для каждой из ветвей и k из окрестности нуля оценка

$$|G_1(n, k)| \leq C \frac{|n|}{2} (1 + \sigma)^{|n|} \leq C_1 e^{\sigma |n|}, \quad (2.7)$$

где $C, C_1 = \text{const}$, а $\sigma_1 > 0$ произвольное наперед заданное число.

Пользуясь (2.7), оценим, считая, что $\sigma_1 < a$,

$$\left| \sqrt{V(n)} G_1(n - m, k) \sqrt{V(m)} \right|^2_{L^2(\mathbb{Z}^2)} =$$

$$= \sum_{n, m \in \mathbb{Z}^2} |V(n)||G_1(n - m, k)|^2 |V(m)| \leq$$

$$\leq C \sum_{n, m \in \mathbb{Z}^2} e^{-a |n|} e^{\sigma_1 (|n| + |m|)} e^{-a |m|} = C \left(\sum_{n \in \mathbb{Z}} e^{-(a - \sigma_1 |n|)} \right)^2 < \infty. \quad (2.8)$$
Последовательности

$$g_{nm}^{(N)}(k) = \theta(N - |n|)\theta(N - |m|)\sqrt{V(n)}G_1(n - m, k)\sqrt{V(m)},$$

N=1,2,..., где \(\theta(t)\) — функция Хевисайда, в силу аналитичности функции \(f_n(k)\) определяют \(L^2(Z^2)\)-значные двулистные аналитические функции, которые вследствие оценки (2.8) равномерно на компактах из окрестности нуля сходятся при \(N \to \infty\) к \(L^2(Z^2)\)-значной функции (2.5). В силу теоремы Вейерштрасса (очевидно, применимой к векторноозначным функциям) лемма доказана.

Следствие 2.1. Обозначим через \(A(k)\) операторнозначную функцию с ядром (2.5). Тогда \(A(k)\) в окрестности \(k = 0\) аналитически зависит от \(k\) и принимает значения в множестве компактных операторов.

Теорема 2.1. Пусть

$$v = \sum_{n \in I} V(n) \neq 0.$$

Тогда в некоторых окрестностях точек \(E = \pm 2\) для всех достаточно малых \(\varepsilon\) оператор \(H(\varepsilon)\) имеет ровно одно значение, для которых справедлива формула соответственно

$$E = \pm(2 + \frac{\varepsilon}{\sqrt{k}}) + o(\varepsilon^2).$$ (2.9)

При этом если \(v > 0\), то уровень является собственным значением, а если \(v < 0\), то резонансом.

Доказательство. Согласно (2.4) записем (2.3) в виде

$$y = \sum_{2k} \frac{\varepsilon}{2k} (y, \sqrt{V}) - \varepsilon A(k)y.$$ (2.10)

Введем для достаточно малых \(\varepsilon\) переменную \(z = (1 + \varepsilon A(k))y\) и перепишем уравнение (2.10) в виде

$$z = \sum_{2k} ((1 + \varepsilon A(k))^{-1} z, \sqrt{V}).$$ (2.11)

91
Из (2.11) имеем \(z = C\sqrt{V}, \) где \(C = \text{const}, \) причем в случае существования уровня \(C \neq 0. \) Подставляя данное выражение в (2.11), приходим к алгебраическому уравнению

\[
k = \varepsilon f(k),
\]

где

\[
f(k) = \frac{1}{2}(1 + \varepsilon A(k))^{-1}(\sqrt{V}, \sqrt{V}).
\]

Очевидно, что существование уровня эквивалентно существованию решения уравнения (2.12).

Уравнение (2.12) является уравнением на неподвижную точку для каждой из ветвей функции \(f(k). \) В силу принципа сжимающих отображений для доказательства существования и единственности решения уравнения (2.12) (для каждой ветви) в круге \(S = \{|k| \leq \rho\}, \) где \(\rho \) достаточно мало, достаточно доказать, что \(\varepsilon f(k) \) переводит круг в себя и является сжимающим отображением.

Для всех достаточно малых \(\varepsilon \) имеем согласно (2.13)

\[
f(k) = \frac{1}{2} \sum_{n=0}^{\infty} \varepsilon^n (A^k(k)(\sqrt{V}), \sqrt{V}),
\]

причем ряд в правой части равенства сходится равномерно по \(k \in S. \) В силу (векторизованного варианта) теоремы Вейерштрасса функция \(f(k) \) аналитична и, следовательно, ограничена на множестве \(S, \) и для достаточно малых \(\varepsilon \) отображение \(\varepsilon f(k) \) переводит \(S \) в себя. Сжимаемость отображения \(\varepsilon f(k) \) вытекает из оценки

\[
\varepsilon |f(k_1) - f(k_2)| = \varepsilon \left| \int_{[k_1, k_2]} f'(\varkappa) d\varkappa \right| \leq \varepsilon M |k_1 - k_2|,
\]

где \(k_1, k_2 \in S, M = \sup_{\varkappa \in S} |f'(\varkappa)|, \) поскольку для \(\varepsilon < M^{-1} \) имеем \(q = M \varepsilon < 1.\)
Докажем формулу (2.9). Положим $k_0 = 0$, тогда первое приближение для решения уравнения $k = f(k)$ имеет вид

$$k_1 = \varepsilon f(0) = \frac{\varepsilon}{2}(1 + \varepsilon A(0))^{-1}(\sqrt{V}, \sqrt{V}) = \frac{\varepsilon}{2}(\sqrt{V}, \sqrt{V}) + o(\varepsilon) = \frac{\varepsilon}{2} + o(\varepsilon).$$

Пусть k — решение уравнения (2.12). В силу известной формулы для погрешности

$$|k - k_1| \leq \frac{q}{1-q} |k_1 - k_0| = o(\varepsilon).$$

Следовательно,

$$k = k_1 + o(\varepsilon) = \frac{\varepsilon}{2} + o(\varepsilon). \quad (2.14)$$

Отсюда

$$E = 2\sqrt{1 + k^2} = \pm 2\left(1 + \frac{\varepsilon^2 \sigma^2}{8} + o(\varepsilon^2)\right) = \pm \left(2 + \frac{\varepsilon^2 \sigma^2}{8} + o(\varepsilon^2)\right),$$

причем в силу равенства $\sqrt{E^2 - 4} = 2k$ и (2.14) $v > 0$ отвечает первому листу функции Грена G (собственному значению), а $v < 0$ — второму листу (резонансу), поскольку в силу (2.2) и соответственно экспоненциального убывания (возрастания) функции Грена решение $x(n)$ также будет экспоненциально убывать (восстать).

Замечание 2.1. Из доказательства видно, что краяность уровня (т.e. размерность пространства решений уравнения (2.3)) равна единице.

Список литературы

7. Чубурин Ю.П. О малых возмущениях оператора Шредингера с периодическим потенциалом // Теор. и матем. физика. Т. 110, Г3. С. 443 453.

94