УДК 517.977

© А.Ф. Габдрахимов, В.А. Зайцев

О ЛЯПУНОВСКОЙ ПРИВОДИМОСТИ СТАЦИОНАРНЫХ УПРАВЛЯЕМЫХ СИСТЕМ 1

Рассмотрим линейную управляемую систему дифференциальных уравнений с постоянными коэффициентами

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m,$$
 (1)

где $A \in M_n$, $B \in M_{n,m}$. Пусть управление в системе (1) строится в виде u = U(t)x, где $U : \mathbb{R} \to M_{m,n}$ — кусочно-непрерывная ограниченная матричная функция. Тогда система (1) перейдет в однородную систему

$$\dot{x} = (A + BU(t)) x, \quad x \in \mathbb{R}^n.$$

Задача ляпуновской приводимости заключается в следующем: требуется для произвольной (канонической в некотором смысле) системы дифференциальных уравнений

$$\dot{y} = C(t)y, \quad y \in \mathbb{R}^n$$
 (3)

с ограниченной на \mathbb{R} кусочно-непрерывной матрицей C(t) построить управление U(t), $t \in \mathbb{R}$ такое, чтобы система (2) с этим управлением была асимптотически эквивалентна системе (3) с заданной матрицей C(t), то есть чтобы матрицы A + BU(t) и C(t) были кинематически подобны. Асимптотическая эквивалентность систем (2) и (3) означает существование преобразования Ляпунова x = L(t)y, связывающего эти системы. Величины и свойства, сохраняющиеся под действием ляпуновских преобразований, называются ляпуновскими (асимптотическими) инвариантами. Решения двух асимптотически эквивалентных систем имеют «одинаковое» поведение при $t \to +\infty$, поэтому приводимость к системе определенного вида позволяет влиять на асимптотическое поведение решений системы. Если в качестве C(t) брать постоянные матрицы, то это означает приводимость в классическом смысле. Если в качестве C(t) брать порождающие матрицы для некоторого обыкновенного дифференциального уравнения, то говорят о приводимости системы (2) к обыкновенному дифференциальному уравнению. Если в качестве системы (3) выбирать систему с отрицательными характеристическими показателями Ляпунова, то из ляпуновской приводимости к системе (3) будет следовать стабилизируемость системы (2), то есть экспоненциальная устойчивость всех решений системы (2). В качестве допустимых управлений также можно выбирать различные классы управлений, например, постоянные, или кусочно-постоянные, или периодические и т.п. Тогда говорят о ляпуновской приводимости в соответствующем классе управлений.

Здесь рассмотрены случаи n = 2, 3, 4.

Т е о р е м а 1 [1]. Пусть n=2 и пусть система (1) вполне управляема. Тогда для любой системы (3) найдется кусочно-постоянное периодическое управление $\hat{U}=\hat{U}(t)$, при котором система (2) асимптотически эквивалентна системе с заданной матрицей C(t). Если матрица C(t) постоянна, то есть $C(t)\equiv C$, то управление \hat{U} можно выбрать постоянным.

Т е о р е м а 2 [1]. Пусть n=3 и пусть система (1) вполне управляема. Тогда для любой системы (3) найдется кусочно-постоянное периодическое управление $\hat{U}=\hat{U}(t)$, при котором система (2) асимптотически эквивалентна системе с заданной матрицей C(t).

¹Работа второго автора выполнена при финансовой поддержке РФФИ (грант 06-01-00258).

Предположим теперь, что система (3) стационарная, то есть $C(t) \equiv C$.

Т е о р е м а 3 [1]. Пусть n=3 и пусть система (1) вполне управляема. Тогда для любой матрицы C найдется управление \widehat{U} , при котором матрицы $A+B\widehat{U}(t)$ и C кинематически подобны. Причем, если матрица C имеет элементарные делители $(\lambda-a)^2$, $(\lambda-a)$, то управление $\widehat{U}=\widehat{U}(t)$ можно выбрать кусочно-постоянным, периодическим с любым наперед заданным периодом $\vartheta>0$ с тремя переключениями на отрезках длины ϑ ; в других случаях управление можно выбрать постоянным.

Т е о р е м а 4 [2]. Пусть n=4 и пусть система (1) вполне управляема. Тогда для любой матрицы C найдется управление \widehat{U} , при котором матрицы $A+B\widehat{U}(t)$ и C кинематически подобны. Причем: a) если матрица C имеет элементарные делители $(\lambda-a)^3$, $(\lambda-a)$, то управление $\widehat{U}=\widehat{U}(t)$ можно выбрать кусочно-постоянным, периодическим c любым наперед заданным периодом $\vartheta>0$ c тремя переключениями на отрезках длины ϑ ; δ) если матрица C имеет элементарные делители $(\lambda-a)^2$, $(\lambda-a)$, $(\lambda-b)$, $b\neq a$, то управление U=U(t) можно выбрать кусочно-постоянным, периодическим c любым наперед заданным периодом $\vartheta>0$ c четырьмя переключениями на отрезках длины ϑ ; ϵ других случаях управление можно выбрать постоянным.

З а м е ч а н и е 1. Построенное во всех теоремах управление $\widehat{U}=\widehat{U}(t)$ обладает свойством «локальной ограниченности» относительно C(t) в следующем смысле: для любого N>0 существует l=l(N) такое, что для любой матрицы C(t), удовлетворяющей неравенству $|C(t)|\leqslant N,\ t\in\mathbb{R},$ кусочно-постоянное управление $\widehat{U}(t)$, обеспечивающее кинематическое подобие матриц $A+B\widehat{U}(t)$ и C(t), будет удовлетворять неравенству $|\widehat{U}(t)|\leqslant l,$ $t\in\mathbb{R}$.

Список литературы

- 1. Зайцев В. А. Глобальная достижимость и глобальная ляпуновская приводимость двумерных и трехмерных линейных управляемых систем с постоянными коэффициентами // Вестник Удмуртского университета. Математика. Ижевск, 2003. С. 31–62.
- 2. Габдрахимов А.Ф., Зайцев В.А. Ляпуновская приводимость четырехмерных линейных стационарных управляемых систем в классе кусочно-постоянных управлений // Вестник Удмуртского университета. Математика. Ижевск, 2006. С. 25–40.

Габдрахимов Александр Фаритович Удмуртский государственный университет 426034, Россия, г. Ижевск, ул. Университетская, 1 (корп. 4) e-mail: gab@udm.ru

Зайцев Василий Александрович Удмуртский государственный университет 426034, Россия, г. Ижевск, ул. Университетская, 1 (корп. 4) e-mail: verba@udm.ru