УДК 62-50

© Л.В. Спесивцев

О ПРИВЕДЕНИИ ДВИЖЕНИЯ УПРАВЛЯЕМОЙ СИСТЕМЫ В ОКРЕСТНОСТЬ ВЫБРАННОЙ ТОЧКИ МНОЖЕСТВА ДОСТИЖИМОСТИ¹

Введение

Рассматривается управляемая система на конечном промежутке времени, стесненная фазовым ограничением. Предлагается метод построения управления, приводящего движение управляемой системы в окрестность выбранной точки на множестве из системы множеств, аппроксимирующей множество достижимости. Метод базируется на «пиксельном» (сеточном) представлении фазового пространства системы.

§ 1. Основные определения

Пусть дана управляемая система, поведение которой описывается уравнением

$$\dot{x} = f(t, x, u), \quad u \in P, \quad t \in I, \quad I = [t_0, \theta], \quad t_0 < \theta < \infty. \tag{1}$$

Здесь x-m-мерный вектор системы, u- управление, P- компакт в евклидовом пространстве \mathbb{R}^m .

Предполагается, что для этой системы выполнены стандартные условия (см. [6]).

Поставим в соответствие уравнению (1) дифференциальное включение (ДВ)

$$\dot{x} \in F(t, x), \quad t \in I, \quad F(t, x) = co\{f(t, x, u) : u \in P\},$$
 (2)

где coY означает выпуклую оболочку множества Y .

Наряду с системами (1) и (2) задано замкнутое множество $\Phi \in I \times \mathbb{R}^m$, имеющее непустые сечения $\Phi(t) = \{x \in \mathbb{R}^m : (t,x) \in \Phi\}, \ t \in I$, причем $\Phi(\theta)$ - компакт в \mathbb{R}^m . При этом предполагаем, что выполнено следующее условие относительно множества Φ :

$$\sup_{t_*,t^*\in[t_0,\theta],||t^*-t_*|\leqslant\delta}d(\Phi(t_*),\Phi(t^*))\leqslant\chi(\delta),\quad\delta>0,$$

где функция $\chi(\delta)$ удовлетворяет предельному соотношению $\lim_{\delta\downarrow 0}\chi(\delta)=0.$

Будем говорить, что решение $x[t], \ x[t_*] = x_*$ уравнения (1) или ДВ (2) является выживающим в Φ , если $(t, x[t]) \in \Phi, \ t \in [t_*, \theta].$

Обозначим через $X(t^*;t_*,x_*)$, $t_0\leqslant t_*\leqslant t^*\leqslant \theta$, множество всех $x^*\in R^m$, в которые приходят в момент t^* всевозможные выживающие в Φ решения $x[t],\ x[t_*]=x_*,\ ДВ$ (2). Полагаем также

$$X(t^*; t_*, X_*) = \bigcup_{x_* \in X_*} X(t^*; t_*, x_*), \quad X_* \subset \mathbb{R}^m.$$

Множеством достижимости X ДВ (2) в множестве Φ на отрезке $[t_0, \theta]$ назовем множество всех точек $(t_*, x_*) \in \Phi$, таких, что $x_* \in X(t_*; t_0, X_0)$.

Полагаем, что задана последовательность $\{\Gamma_n\}$ разбиений $\Gamma_n=\{t_0,t_1,...,t_{N(n)}=\theta\}$ временного интервала I так, что диаметры разбиений стремятся к нулю с ростом номера n. Пространство \mathbb{R}^m разбито на m-мерные кубы B_j с центрами b_j и вершинами, отстоящими от центров на величину $\gamma_n\leqslant (\Delta^{(n)})^{3/2}$. На каждом множестве $F(t,x),\ (t,x)\in I\times D,\ c$ помощью некоторого правила задана конечная δ_n -сеть $F^{(\delta_n)}(t,x)=\{f_k\in F(t,x): k=1,2,...,K_0\},\$ такая, что $d(F(t,x),F^{(\delta_n)}(t,x))\leqslant \delta_n\leqslant (\Delta^{(n)})^{1/2}.$

 $^{^1}$ Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 05–01–00601–а, № 04–01–96099–р2004урал_а) и Программы поддержки ведущих научных школ РФ (грант № НШ–8512.2006.1).

Полагаем, что с учетом дискретизации временного интервала I, пространства \mathbb{R}^m и множеств $F(t,x),\ (t,x)\in I\times D$, для для каждого разбиения Γ_n задана последовательность $\{\tilde{X}^{(n)}(t_i)\}$ множеств, аппроксимирующая множество достижимости X ДВ (2). Способ построения такой системы можно найти в [6].

§ 2. Задача о приведении движения управляемой системы в окрестность выбранной точки множества достижимости

Пусть на множестве из аппроксимирующей системы множеств в момент времени $t_N, N = N(n)$ выбрана некоторая точка $y[t_N]$ и задано $\varepsilon^* > 0$.

Требуется построить допустимое управление $u^*(t)$, $t \in [t_0, \theta]$, приводящее фазовый вектор x[t] системы (1) из начального множества X_0 в ε^* -окрестность точки $y[t_N]$ в момент t_N :

$$x[t_N] \in O_{\varepsilon^*}(y[t_N]) = \{x \in R^m : ||x - y[t_N]|| \leqslant \varepsilon^*\}.$$

При этом должно выполняться включение

$$x[t] \in \Phi(t)_{\varepsilon^*}, \ t \in [t_0, t_N].$$

В настоящей работе рассматривается способ построения требуемого управления $u^*(t) = u^*(t_i), t \in [t_i, t_{i+1}), i = 0, 1, ..., N-1$, и устанавливается справедливость следующей теоремы:

Т е о р е м а 1 (о построении движения). Для любого $\varepsilon^* > 0$ найдется такой номер n_* , что для всякого $n > n_*$ управление $u^*(t) = u^*(t_i), \ t \in [t_i, t_{i+1}), \ i = 0, 1, ..., N-1$ порожедает движение системы (1) $x[t], \ t \in [t_0, \theta]$, удовлетворяющее включениям

$$x[t] \in \Phi(t)_{\varepsilon^*}, \ t \in [t_0, t_N],$$

 $x[t_N] \in O_{\varepsilon^*}(y[t_N]).$

Список литературы

- 1. Красовский Н. Н., Субботин А. И. Позиционные дифференциальные игры. М.: Наука. 1974.
- 2. Куржанский А.Б., Филиппова Т.Ф. Дифференциальные включения с фазовыми ограничениями. Метод возмущений. // Оптимальное управление и дифференц. ур-ния. Тр. МИ РАН. Т. 211. М. 1995. С. 304–315.
- 3. Филиппова Т.Ф. Задачи о выживаемости для дифференциальных включений. // Дис. ...докт. физ.-матем. наук: Екатеринбург: Ин-т матем. и механ. УрО РАН, 1992. 266 с
- 4. Никольский М. С. Об аппроксимации множества достижимости для дифференциального включения. // Вестн. МГУ. Сер. Вычисл. матем. и кибернетика. 1987. Т. 4. С. 31–34.
- 5. Незнахин А. А., Ушаков В. Н. Сеточный метод приближенного построения ядра выживаемости для дифференциального включения. // Распределенные системы: оптимизация и приложения в экономике и науках об окружающей среде. Сборник докладов к Международной конференции. Научное издание. Екатеринбург: УрО РАН 2000. с. 156–158.
- 6. Незнахин А. А. Построение ядер выживаемости в нелинейных задачах управления. // Дис. ...канд. физ.-матем. наук: Екатеринбург: Ин-т матем. и механ. УрО РАН, 2001. 132 с.
- 7. Aubin J.-P. Viability Theory. Boston, Basel, Berlin: Birkhauser, 1991.
- 8. Saint-Pierre P., Quincampoix M. An algoritm for viability Kernels in Holderian case: approximation by discrete dynamical systems // J. Math. System Estim. Control. 1995, V. 5, №1. P. 115–118.
- 9. Ушаков В. Н. К задаче построения стабильных мостов в дифференциальной игре сближения-уклонения. // Изв. АН СССР. Техн. кибернетика Т. 4., 1980. с. 32–45.

Спесивцев Леонид Валерьевич Институт математики и механики УрО РАН, Россия, Екатеринбург e-mail: guesting@mail.ru