dc.description.abstract |
Рассматриваемый текст предназначен в первую очередь магистрам, занимающимся на специализации «дифференциальные уравнения». Он посвящен применению к рассматриваемым управляемым системам хорошо разработанной теории классических динамических систем, методов дифференциальной геометрии, а также теории дифференциальных включений, разработанной в основном А.Ф. Филипповым. Основное содержание текста состоит в исследовании так называемой стандартной управляемой системы. Фазовым пространством такой системы является конечномерное гладкое многообразие. Это предположение очень важно с точки зрения приложений. Кроме того, предполагается, что векторное поле системы локально липшицево, а геометрические ограничения на управляемые параметры компактны. Рассматриваемые здесь допустимые управления могут быть как программными, так и позиционными. В первом случае мы приходим к так называемым системам уравнений Каратеодори, во втором – в случае разрывов векторного поля по фазовым переменным - к дифференциальным включениям Филиппова. Серьезное внимание уделяется здесь изучению условий, при которых сохраняются заданные по условиям задачи свойства управляемой системы при замыкании множества сдвигов (в топологии равномерной сходимости на компактах) исходной стандартной управляемой системы. |
ru_RU |