dc.contributor.author |
Зайцев, Василий Александрович |
|
dc.date.accessioned |
2012-06-10T21:53:17Z |
|
dc.date.available |
2012-06-10T21:53:17Z |
|
dc.date.issued |
2002 |
|
dc.identifier.uri |
http://elibrary.udsu.ru/xmlui/handle/123456789/9259 |
|
dc.description.abstract |
Let the stationary system $\dot x=Ax+Bu, x\in\R^2, u\in\R^m$ is totally controllable. Then it possesses the property of global Lyapunov reducibility in class of stationary controls $u=Ux$, that is for any fixed stationary system $\dot y=Cy$ there exists the time-independent matrix $U$, such that the system $\dot x=(A+BU)x$ with this matrix is asymptotically equivalent (kinematically similar) to the above fixed system. |
ru_RU |
dc.language.iso |
ru |
ru_RU |
dc.subject |
линейная управляемая система |
ru_RU |
dc.subject |
асимптотически эквивалентные системы |
ru_RU |
dc.subject |
глобальная достижимость |
ru_RU |
dc.subject |
стационарные системы |
ru_RU |
dc.title |
О глобальной ляпуновской приводимости двумерных линейных стационарных управляемых систем |
ru_RU |
dc.type |
Article |
ru_RU |