dc.description.abstract |
В статье рассматриваются приложения универсальной силлогистики (логики $L_{S_{2}}$) с областью интерпретации, задаваемой алгебраической системой с опорным множеством $\Sigma(\Omega)$ - семейством тех подмножеств универсума $\Omega$, которые можно построить с помощью операций $\{ \cdot, +, \prime \}$ из модельных множеств ${\tilde \aleph _n} = \left\langle {{\aleph _1},{\aleph _2},\ldots,{\aleph _n}} \right\rangle$. В качестве отношений выступают отношения равенства и строгого включения множеств. Иллюстрируется использование неклассической многозначной логики $L_{S_{2}}$ для решения задачи верификации рассуждений. Показано, что если задача верификации может быть сформулирована с использованием понятий соответствия между множествами, то проверку логического следования можно производить с использованием экстремальных свойств соответствий Галуа и семантических значений формул $L_{S_{2}}$. Семантическим значением формулы является одно или многоэлементное семейство конституентных множеств. Предлагаемый подход позволяет значительно уменьшить вычислительную сложность верификации рассуждений по сравнению с алгоритмами, которые применяются для логики предикатов первого порядка. Работа показывает возможности алгебраического подхода, заложенного Аристотелем, Жергонном, Булем, Порецким. |
ru_RU |