Abstract:
|
Рассматривается дифференциальная игра (ДИ) сближения-уклонения, а также ее релаксации, конструируемые с учетом соображений приоритетности в вопросах реализации наведения на целевое множество (ЦМ) и соблюдения фазовых ограничений (ФО). Относительно ЦМ предполагается замкнутость в естественной топологии пространства позиций, а относительно множества, определяющего ФО, постулируется замкнутость сечений, отвечающих фиксации моментов времени. Для такой постановки с использованием метода программных итераций (МПИ) установлен вариант альтернативы в некоторых естественных классах стратегий игроков (аналог альтернативы Н.Н. Красовского, А.И. Субботина). Рассматривается схема релаксации игровой задачи сближения для общего случая нелинейной ДИ с незамкнутым, вообще говоря, множеством, определяющим ФО. При построении релаксаций учитываются соображения, связанные с приоритетностью в «степени» осуществления наведения на ЦМ и соблюдения ФО (исследуется случай «несимметричного» ослабления условий окончания игры). Вводится функция позиции, значения которой (с «поправкой» на приоритетность) играют всякий раз роль аналога наименьшего размера окрестностей ЦМ и множества, задающего ФО, при которых еще возможно гарантированное решение релаксированной задачи игрока, заинтересованного в сближении с ЦМ при соблюдении ФО. Показано, что значение данной функции (при фиксации позиции игры) является ценой ДИ на минимакс-максимин функционала качества, который характеризует как «степень» сближения с ЦМ, так и «степень» соблюдения исходных ФО. |