О свойстве плотности в пространствах слабо абсолютно непрерывных мер. Общий случай

Репозиторий электронной библиотеки/Manakin

О свойстве плотности в пространствах слабо абсолютно непрерывных мер. Общий случай

Показать полную запись

Title: О свойстве плотности в пространствах слабо абсолютно непрерывных мер. Общий случай
Author: Бакланов, А.П.
Abstract: Показана возможность погружения некоторых множеств ступенчатых функций и множеств равномерных пределов упомянутых функций в компактные в $*$-слабой топологии подмножества множества всех ограниченных конечно-аддитивных (к.-а.) мер в виде всюду плотного множества. В частности рассматривается множество всех ступенчатых функций, интеграл модуля которых по неотрицательной к.-а. мере $\lambda$ равен единице. Для таких множеств установлена возможность упомянутого погружения без дополнительных предположений на меру $\lambda,$ что существенно обобщает ранее полученные результаты. Используя разложение Собчика-Хаммера, было установлено, что если мера $\lambda$ имеет конечное множество значений, то такие множества функций допускают погружение в единичную сферу (в сильной норме-вариации) пространства слабо абсолютно непрерывных к.-а. мер относительно $\lambda$ в виде всюду плотного множества. Для меры $\lambda$ с бесконечным множеством значений установлено, что упомянутые множества функций допускают погружение в единичный шар пространства слабо абсолютно непрерывных к.-а. мер относительно $\lambda$ в виде всюду плотного множества. Результаты могут быть использованы в конструкциях расширения линейных задач управления в классе к.-а. мер для построения аналогов множеств достижимости, устойчивых относительно ограничений асимптотического характера.
URI: http://elibrary.udsu.ru/xmlui/handle/123456789/16920
Date: 2018-01-11


Файлы материала

Имя файла Размер Формат Просмотр
50-01.pdf 262.3Kb PDF Thumbnail

Материал привязан к следующим коллекциям

Показать полную запись

Искать


Расширенный поиск

Просмотр

Пользователь