Abstract:
|
Показана возможность погружения некоторых множеств ступенчатых функций и множеств равномерных пределов упомянутых функций в компактные в $*$-слабой топологии подмножества множества всех ограниченных конечно-аддитивных (к.-а.) мер в виде всюду плотного множества. В частности рассматривается множество всех ступенчатых функций, интеграл модуля которых по неотрицательной к.-а. мере $\lambda$ равен единице. Для таких множеств установлена возможность упомянутого погружения без дополнительных предположений на меру $\lambda,$ что существенно обобщает ранее полученные результаты. Используя разложение Собчика-Хаммера, было установлено, что если мера $\lambda$ имеет конечное множество значений, то такие множества функций допускают погружение в единичную сферу (в сильной норме-вариации) пространства слабо абсолютно непрерывных к.-а. мер относительно $\lambda$ в виде всюду плотного множества. Для меры $\lambda$ с бесконечным множеством значений установлено, что упомянутые множества функций допускают погружение в единичный шар пространства слабо абсолютно непрерывных к.-а. мер относительно $\lambda$ в виде всюду плотного множества. Результаты могут быть использованы в конструкциях расширения линейных задач управления в классе к.-а. мер для построения аналогов множеств достижимости, устойчивых относительно ограничений асимптотического характера. |